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Linköpings Universitet, Sweden

by

Frida Gunnarsson

Reg nr: LiTH-ISY-EX-3098

Supervisor: Fredrik Gunnarsson

Examiner: Fredrik Gustafsson
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Abstract

The main protocol for flow and congestion control on the Internet is the
Transfer Control Protocol, TCP. This protocol was constructed and de-
veloped based on heuristic arguments, and its main purpose is to prevent
network congestion. Because of shifts in the Internet traffic, TCP does
not work as well as when it was designed - a problem that has been ad-
dressed by researchers in different ways. This report gives an overview of
the different TCP performance aspects and active areas of research. The
research directions address different problem areas and there are two major
proposals concerning congestion control and TCP. They discuss the use of
explicit congestion notification and of automatic control theory to enhance
the performance of the existing congestion control in TCP.

A proposed scheme with feedback control and a Smith predictor is dis-
cussed and compared with ordinary TCP, in a simulation study. The sim-
ulations have been carried out for a single TCP connection with a model
implemented in Simulink and Stateflow. The report shows that the feed-
back solution improves the performance of TCP. With feedback TCP and
for this single connection, we manage to avoid packet losses, reduce the time
delay and stabilize the traffic load.

Key Words: TCP, transfer control protocol, congestion control, Internet,
Smith predictor, time delay system, Simulink, StateFlow
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Chapter 1
Introduction

The use for automatic control methods in communication systems is a hot
topic in this information era. Being one of the largest man-made communi-
cation systems in the world, the Internet with its control algorithms is an
interesting and challenging area of research for people in automatic control.
The Internet is in constant change. The number of users is increasing and
there has been a shift in the traffic characteristics: more traffic and shorter
transmissions.

The most widely used control algorithm is the one in the transfer control
protocol, TCP. Its purpose is to control the flow and prevent congestion.
TCP was developed during the birth of Internet, based on heuristic argu-
ments and the current traffic situation. The fast growth of the Internet
has changed the conditions that TCP was made for. The challenge for re-
searchers is to come up with significant improvements that require as few
changes as possible. Backward compatibility is also an issue here.

The purpose of this report is to summarize the existing research on
Internet flow and congestion control, especially the different directions con-
cerning TCP. It is also to investigate the usefulness of automatic control on
the Internet, and to be a base and inspiration for continued work. The pur-
pose of the work that resulted in this report was also to make a simulation
environment that illustrates the behavior of TCP.

This report focuses on TCP and on the research around this protocol.

1



2 Chapter 1 Introduction

We will start in Chapter 2 by explaining how TCP works and exemplifying
some of its behavior, using data from simulations. Here we will also discuss
some of the recent research on TCP congestion control. In Chapter 3 we will
concentrate on methods that have been developed using a control theoretic
framework, we will present the theory and provide some results from simu-
lations. These results will be qualitatively compared with the results from
simulations using ordinary TCP. Finally, in Chapter 4 we will summarize
our results, give some conclusions and discuss future work.

The simulation model is presented in Appendix A. Appendix B provides
a list of articles sorted by the area of research that they address. Along with
every article is also a short description of their content and results. This
part of the report is intended for people with an interest in the whole picture
of Internet traffic flow control research.

This report is the final exam for a Master’s program at the Linköpings
Universitet, Sweden. It is the completion of a Master of Science degree in
Applied Physics and Electrical Engineering. The report was written at the
Division of Control & Communication, Department of Electrical Engineer-
ing, Linköpings Universitet. It was written, using LATEX 2ε, for everyone
with an interest in Internet technology, but assumes that the reader has
some basic knowledge in mathematics, transform theory, programming and
control engineering.



Chapter 2
Transfer Control Protocol, TCP

This chapter will give a short description on how TCP operates to avoid
congestion and also point out some of the problems with its behavior in to-
day’s Internet. We will also use simulated data to exemplify the behavior of
TCP. For a more thorough description on TCP, please refer to Stevens [33].

2.1 TCP and Congestion

TCP is the main transfer protocol on the Internet today. Its purpose is to
control the flow of data and to prevent the network from getting congested.
In the following discussion the end computers will be called hosts and the
computers along the path between them will be called routers, as in route
or path. When a host wants to send data to another host it has to establish
a TCP connection. TCP divides the data into segments. The two hosts
together decides the size of these segments in the preliminary phase of the
connection. The preliminary phase is often called the three-way handshake,
because it consists of three transmissions between the two hosts. We will
not discuss how this preliminary phase works in this report. When the
handshake is complete the hosts can start sending data. The data segments
will be referred to as packets in the following discussion.

The TCP supplies a header to every packet. This header contains in-
formation about the sender and the packet, to be used by the receiver. A

3



4 Chapter 2 Transfer Control Protocol, TCP
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Figure 2.1. A simplified picture of the TCP header. The fieldnames in brackets
will not be explained nor discussed here.

simplified version of the header is given in Figure 2.1. Some of the fields
have their field names in brackets, and they will not be discussed here. Ev-
ery packet is given a sequence number since we have to know the correct
order of the packets. Among the information in the header, we will focus on
the advertised window and the acknowledgment number. All connections on
the Internet are bidirectional, i.e. the roles of sender and receiver are shared
between both end hosts. For simplicity we will discuss only the functions in
one direction. In our discussion the sender is the host sending data packets
and the receiver is the host collecting them and responding to them. The
receiver has an internal buffer in which the data packets are stored and
processed. We will denote the size of this buffer with ReceiversBuffer.

We are now going to discuss the information in the TCP header that we
are interested in. As mentioned, the sequence number indicates the position
of the packet in the original data. The Advertised Window, AdvWnd, is a
measure of how much the receiver is capable of receiving. If we denote the
last byte received by the receiver with LastRcvByte and the next byte the
application at the receiver will process with NextByteToRead we get

AdvWnd = ReceiversBuffer − (LastRcvByte− NextByteToRead),
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i.e. how much space there is left in the receiver ’s buffer.
The Acknowledgment Number, ack no., is used by the receiver as a

receipt of received data; this field indicates the sequence number of the
next packet that the receiver expects. The receiver will acknowledge every
packet received, if a packet is lost the receiver will send duplicate acks
for this packet as out-of-order packets arrive. E.g. the incoming packets
arrive in the following sequence: 1,2,4,5. The corresponding sequence of
acknowledgments will then be: 2,3,3,3, because the receiver is still waiting
for packet number three to arrive. The “early” packets are stored until
the lost packet is received, and then they are all passed to the buffer in
the right order. We will assume that every packet is acknowledged with a
separate ack. This is not true in the real implementations of the TCP, but
it simplifies the theoretic presentation. In reality one ack can acknowledge
more than one arrived packet. The changes in the following discussion are
straightforward.

For simplicity we now introduce

PacketsOut = LastSentPacket− LastAckedPacket,

for the packets that have been sent but no corresponding ack has arrived
yet, also called the outstanding packets.

Another limit on the amount of data that can be sent is the capacity of
the network. The capacity is measured in how much data the network can
carry and process at each time instant, measured in bytes per second. When
a TCP connection is initialized a share of the capacity is assigned to this
connection, this share is called the available bandwidth for the connection.
The size of the available bandwidth depends on the load and the total
bandwidth of the network. The size is also unknown to the connection.
If there are many connections at the same time the bandwidth for each
connection will be small and vice versa. If the number of connections varies
then the size of the available bandwidth varies during a connection.

The sender receives information about the capacity of the receiver in
incoming packets, but the network has no way of telling the sender about its
capacity. Therefore, every host has an internal window called the congestion
window, cwnd. The cwnd is used to limit the amount of data sent, based
on the state of the network. The cwnd is a way for the host to estimate
the available bandwidth. As long as every packet is delivered the value
of the cwnd will be increased and when a packet is lost its value will be
decreased. We will later explain exactly how the size of the cwnd is set. In
this discussion we are only interested in the sender ’s cwnd. Thus, the cwnd
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Figure 2.2. TCP’s sliding window. The sender has transmitted four sequences
and received acknowledgments for two.

is an estimate of the network capacity and the AdvWnd denotes capacity of
the receiver. The sender ’s cwnd and the receiver ’s AdvWnd together decide
how much data the sender can transmit at each time instant. We denote
the maximum amount of data that is allowed to send with MaxSend.

MaxSend = min(cwnd,AdvWnd)− PacketsOut (2.1)

This method of deciding how much data to send is called a sliding window.
TCP’s sliding window is visualized in Figure 2.2, we assume here that the
cwnd is larger than the AdvWnd. If this was not the case, the size of the
cwnd would be the limiting factor instead of the AdvWnd in Figure 2.2. The
window will move, shrink and grow during a transmission, that is why it
is called a sliding window. Note that the leftmost side of the window can
never move to the left.

As mentioned before the size of the cwnd is dynamic and TCP uses it to
avoid congestion. Every time a non-duplicate ack is received by the sender,
the size of the cwnd is changed according to predefined rules, which we will
describe in the following part of this section.

There are two phases for the connection, Slow start and Congestion
avoidance, and different updating rules apply for the two phases. The Slow
start phase is used to quickly reach an appropriate send rate starting from
minimum. Then the Congestion avoidance phase takes over and slowly in-
creases the send rate. To separate the two phases the sender uses another
internal parameter called the ssthresh (slow start threshold). In our discus-
sion the values of cwnd and ssthresh has the unit of measurement “number
of packets”. The two phases are separated as follows:
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if cwnd <= ssthresh
slow start

else
congestion avoidance

endif

When the phase is determined the sender can update the internal param-
eters accordingly. This happens, as mentioned before, every time a non-
duplicate ack arrives.

if new connection
cwnd = one packet

elseif slow start
cwnd = cwnd + one

elseif congestion avoidance
cwnd = cwnd + 1/cwnd

endif

Assume that MaxSend packets are sent at every time unit and the corre-
sponding acks arrive after exactly one time unit. Also assume that the
AdvWnd is larger than the cwnd. Then, let c(n) be the value of the cwnd at
time n, p(n) be the number of packets sent at time n and s be the value of
the ssthresh. p(n−1) acks arrive at time n and the value of c(n) is therefore
updated p(n− 1) times. We can then express the updating rules as follows

c(n) =


1 if n = 0
c(n − 1) + p(n− 1) if c(n− 1) ≤ s
c(n − 1) + p(n− 1)/c(n − 1) otherwise

(2.2)

In this ideal case p(n) = c(n), which means we get

c(n) =


1 if n = 0
2c(n− 1) if c(n− 1) ≤ s
c(n− 1) + 1 otherwise

(2.3)

this gives us

c(n) =

{
2n for n ≤ N
c(N) + (n−N) otherwise

(2.4)

where the constant N is given by the relation 2N−1 ≤ s < 2N .
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Figure 2.3. The ideal increase of the congestion window. At the beginning of each
time step, a burst of allowed packets are sent and they all return after one time
unit, which results in an increase of the cwnd.

This gives us an ideal increase of the cwnd as shown i Figure 2.3. At
time zero one packet is sent and the corresponding ack arrives at time one.
This sets the cwnd to two and two packets are sent. Their acks arrive at
time three and the cwnd is set to four etc. In this case N = 5.

This increase of the cwnd will eventually result in a packet loss, i.e. the
amount of sent packets will overflow one of the routers along the way and
the arriving packets will be lost. Packets might also get lost because of
transmission errors, routing path errors or something else. Though, TCP
assumes that a packet loss means that the system is congested and therefore
decides that something has to be done. There are two ways for the sender
to find out about a packet loss:

Three duplicate acks. When three duplicate acks are received, the sender
retransmits the missing packet and updates the internal parameters.
(The third duplicate ack will be the forth ack with the same number.)
Remember that the ack tells the sender which packet the receiver is
expecting next.

Timeout. When no ack has been received before the timeout limit, TOL,
has expired, the sender retransmits all packets that have been sent
since the presumed loss.

The actions on congestion are to recalculate the cwnd and the ssthresh,
and thereby change the rate of the outgoing data. The recalculations are
made based on the following assumptions:
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• A timeout indicates that the connection has been idle for a longer
period and that this is due to a major congestion, therefore the cwnd
is reset to its initial value.

• The three duplicate acks indicates a single packet loss and, thus, the
cwnd is not decreased as dramatically as after a timeout.

The following rules are used

if three duplicate acks
cwnd = ssthresh + 3
ssthresh = max[0.5 * PacketsOut, 2]
when lost packet acked

cwnd = ssthresh
elseif timeout

ssthresh = max[0.5 * PacketsOut, 2]
cwnd = one

endif

To determine the appropriate timeout limit, the sender has to know how
much time the system needs to deliver a packet and the corresponding ack.
This time is called the round trip time, RTT, and the sender calculates an
average RTT estimate, R(t), based on measurements, M(t), and stores it as
an internal parameter. The estimate, R(t), and the timeout limit, TOL(t),
can be calculated using the low pass filter

R(tnew) = αR(told) + (1− α)M(tnew)
TOL(t) = max(min(βR(t), ub), lb)

where ub is an upper bound on the timeout (e.g. 1 minute) and lb is a lower
bound on the timeout (e.g. 1 second). α is a smoothing factor (e.g. 0.8
to 0.9) and β is a delay variance factor (e.g. 1.3 to 2.0). The times for
the update depend on sending and incoming times. A specific packet was
sent between times told and tnew, and the corresponding ack arrives at time
tnew, which gives a new measurement, M(tnew) (the last measurement we
got was M(told)). The filter is a discrete event clocked low pass filter. The
parameter α tunes the tradeoff between fast adaptivity to changes in the
RTT and noise reduction. More recent TCP-versions also use an estimate
of the variance of R(t) to get a better value on the timeout limit.

The changes in the cwnd at a timeout and after three acks are shown
in Figure 2.4. The sent sequence number, the received acknowledgment
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Figure 2.4. The cwnd upon congestion. The value changes in different ways for
the two different congestion cases. Timeout to the left and three duplicate acks to
the right.

number, the cwnd and the ssthresh are shown. In the leftmost figure we
see that TCP gets an indication of timeout at time 183. This sets the
cwnd to one and the ssthresh is set to half of the number of outstanding
packets (0.5 ∗ (20− 13) = 3.5). The cwnd is then increased with one every
time a new ack arrives until, in this case, a new timeout is detected. In the
rightmost figure we see that the third duplicate ack for sequence number
17 arrives at time 38. The cwnd is then set to the ssthresh plus three
(12 + 3 = 15) and the ssthresh is once again set to half of the outstanding
packets (0.5 ∗ (30 − 16) = 7). When a new ack arrives the cwnd is set to the
value of ssthresh (7) and then ordinary congestion control resumes.

These rules for the TCP congestion control are Internet Standard, and
can be found in e.g. requests for comments [2].

We are interested in applications of automatic control methods on com-
munication systems. As a start, Table 2.1 is a summary of the parameters
that concern the TCP congestion control algorithm.
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Table 2.1. Parameters in the TCP control algorithm
Internal parameters: cwnd, ssthresh, RTT-estimate
For the header: ack.no., seq.no., AdvWnd
Measurements: number of duplicate acks, RTT
Unknown: available bandwidth, BW
System/network characteristics: RTT (varies), total bandwidth.
Controls: output flow

2.2 Problems With TCP

A lot has changed since TCP was invented. Here follows some of the prob-
lems that have been addressed by different researchers. In Section 2.4 and,
more thoroughly, in Appendix B some of the work around these problems
is summarized.

1. TCP provokes packet losses to get an idea about the state of the
network. The protocol has no explicit feedback. We get implicit
feedback when something goes wrong.

2. The use of the available bandwidth oscillates. This means that the
load of the network varies;
small load: space left, unused available capacity,
overload: network overflow, packet losses, delays, retransmissions,
i.e. slower than it has to be.

3. There has been a shift in the Internet traffic. Due to short transmis-
sions, TCP is “always” in slowstart, measurements in [5] show 85% in
slowstart.

4. There is no difference between different traffic classes, such as ftp files,
video streams or e-mail.

5. Originally less than 1% packet losses, now 5− 7%, which means a lot
of retransmissions, (13%), most of which are due to timeouts. (The
measurements can be found in [5].)

6. TCP always assumes that packet losses are due to congestion.

2.3 The behavior of TCP - Modeling and Mea-

surements

This section shows some examples on TCP’s behavior in different situations.
We will use the problems described in the previous section as a base for our
discussion.



12 Chapter 2 Transfer Control Protocol, TCP

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

time

S
eq

ue
nc

e 
nu

m
be

r

Figure 2.5. TCP provokes packet losses and has no explicit feedback.

The measurements were generated by a simulation model implemented
in the MatLab applications Simulink and Stateflow. The complete
model is illustrated and discussed in Appendix A. The simulations have
been done in a one-way scenario to simplify the outcome, i.e. only one of
the hosts had any data. This host always had data to send during the
connections.

The network was modeled with three queues of different lengths and
their waiting times were linear functions of the packetsize plus a Gaussian
error. Since the packets only occupy one cell in the queue, no matter what
their size are, the waiting time as a function of the size corresponds to larger
packets occupying more space than small ones.

We see the way TCP probes the network in Figure 2.5, the figure shows
the sequence numbers of the packets sent as a function of the sending time.
The sending rate (slope) varies and does not seem to converge. E.g. at time
80 and for the sequence numbers between 30 and 40 we see a high sending
rate followed by a retransmission (a ‘dip’), i.e. a provoked packet loss. This
is Problem 1 mentioned in Section 2.2.

Problem 2 regards the use of the bandwidth. In our simulation testbed
we only used one link and only one TCP connection. Therefore, the avail-
able bandwidth is the same as the total bandwidth. The limiting factor
is the length of the smallest queue. At each time instant, our system can
carry and process at most as many packets as this queue can store simulta-
neously. This means that, in this case, the bandwidth use is the same as the
occupancy of the smallest queue, the bottleneck queue. A long queue corre-
sponds to large use of the bandwidth and vice versa. The distribution of the
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Figure 2.6. The use of the bandwidth oscillates. In this special case the available
bandwidth is the same as the length of the shortest queue. The histogram shows the
distribution of the bottleneck queue length, during active connections.

bottleneck queue length, during active connections, is shown in Figure 2.6.
We see that the queue is empty for almost one forth of the time and there is
no specific peak, which would be the case if the system reached equilibrium.
If we consider a setup with constant incoming rate until a packet is lost
and constant output rate, the outermost position of the queue will only be
occupied half the time compared with the other positions. Thus, what we
see in Figure 2.6 is that TCP fills the queue until a packet is lost and then
stops sending until the queue is empty and a little longer.

Even when no packets are lost, TCP might experience problems. Fig-
ure 2.7 shows the sent packets during a transmission when no packets were
lost. TCP retransmitted some packets anyway. We also see TCP’s Time-
Out limit, TOL, based on the round trip time estimate, and the experienced
round trip time. Remember that TCP calculates the round trip time esti-
mate using a low pass filter (see Section 2.1). This means that TCP will
have problems when adjusting to fluctuations in the round trip time, due
to e.g. varying network load.

The retransmissions shown Figure 2.7 come from false timeout indica-
tions. In several places, we see that the round trip time experienced by
TCP are higher than the timeout limit. After a while we hope for that
TCP will find the steady state and for these oscillations to stop. Though,
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Figure 2.7. All congestion notifications may not be due to a packet loss. Here
is the sender side during a part of a transmission when no packets were lost. The
retransmissions occur because of large variations in the experienced round trip time.
The time out limit is shown for comparison.

during short transmissions and when the load of the network varies, this
non-adaptivity might become a big problem.

Another behavior that has been observed during the simulations is that
a retransmission caused by three duplicate acks is most often followed by a
timeout. This is one of the things that causes 13 % of the transmissions to
be retransmissions even when only 5% of the packets are lost, see Problem 5.
After a timeout TCP retransmits all the packets sent during the last round
trip time.

2.4 Resent Research Concerning TCP

Internet has scaled remarkably, from four nodes in 1969 to almost 50 million
hosts today. In resent years, there has been a lot of research concerning
Internet and the unavoidable problems with such a fast growth. Research
has been done on

• router modelling in e.g. [7, 10]

• traffic modelling, Internet traffic arrivals are modelled as being Poisson
distributed, [3, 8]

• how to improve TCP,

• performance improvements without involving TCP. There are sugges-
tions to:



2.4 Resent Research Concerning TCP 15

– enhance the routing algorithms, [4]
– solve the problem with traffic control as a global optimization

problem, [17]
– share information about the state of the network between local

area of hosts, [24, 28]

In Appendix B you will find a summary of some of the articles on these
different topics. In this report we will focus on the improvements of TCP.

Floyd [12, 13] has done extensive research on Explicit Congestion No-
tification, ECN. This means that in some way you explicitly tell the hosts
that the network is congested, mainly by marking the packets. One way
is to use the average queue size to determine whether or not to mark the
packets.

Her work has been continued by Sisalem & Schulzrinne [30, 31] who pro-
posed Binary Congestion Notification, BCN, which means that the way to
tell the hosts is by setting one bit according to some rules. Their conclusion
is that there might be of some interest to explore Explicit Rate Notifica-
tion, ERN, instead [29]. With ERN you tell the host how much bandwidth
it should be using to avoid congestion.

Mascolo et.al. [14, 21, 22] etc. consider a feedback solution for congestion
control. This scheme has been investigated for high speed networks, ATM
and (of course) for TCP. Mascolo [21] proposes a solution with a Smith
predictor to improve TCP’s performance. For the calculations he models
the network using a delay, an integrator and a second delay, (see Section 3.2).

Johansson & Karlsson [18, 19] combines Explicit Rate and feedback con-
trol. Their algorithm improves the performance of TCP’s retransmissions
during slow start. The work is an extension to both Mascolo’s and Floyd’s
work and we will only consider one of them in this report.

Since Mascolo’s proposal is the suggestion that has been developed from
a feedback control perspective, with the origin at the existing protocol, this
is what we are going to focus on. We will describe his results in the following
chapter, and also look at their impact on our simulation model.
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Chapter 3
TCP with Feedback

First we will give a short description of the Smith predictor, then we will go
through the steps in Mascolo’s work and finally compare the results from
simulations in our model with and without the proposed changes.

3.1 The Smith Predictor

The Smith predictor is mainly used on systems with large delays, since
such systems are hard to control with ordinary methods. Otto Smith [32]
proposed a solution that extracts the time delay out of the controller.

Consider a system with transfer function G(s)e−sT . We want to control
this system with a controller, R(s), such that the resulting closed loop
transfer function is F (s)e−sT , see Figure 3.1, i.e. we want to find R(s) such
that

Gc(s) =
R(s)G(s)e−sT

1 +R(s)G(s)e−sT
= F (s)e−sT (3.1)

To do this, we first construct a controller, R̃(s), such that the closed loop

G̃c(s) =
R̃(s)G(s)

1 + R̃(s)G(s)
(3.2)

17
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Figure 3.1. Smith’s predictor, R(s), moves the delay out from the control loop

has nice properties, see for example Glad & Ljung [16] on basic control
theory. Now, we let F (s) = G̃c(s) and we can calculate R(s) by using
Equation (3.1).

F (s)e−sT = G̃c(s)e−sT =
R̃(s)G(s)

1 + R̃(s)G(s)
e−sT (3.3)

and

Gc(s) =
R(s)G(s)e−sT

1 +R(s)G(s)e−sT
(3.4)

Combining Equations 3.1, 3.3 and 3.4 we get

R(s) =
R̃(s)

1 + (1− e−sT )R̃(s)G(s)
. (3.5)

This controller gives the closed loop system, G(s), the same dynamical
behavior as G̃c(s), since the only difference is a time delay. The stability
and robustness properties might change.

3.2 Flow Control with a Smith Predictor

Now let us see how this can be applied on TCP. This section is completely
based on Mascolo’s discussion in [21, sections 4 and 6].
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Figure 3.2. Model of TCP controlled network flow

3.2.1 The Network Model

First we need to have a model of the network. Here the network is going to
be our system and TCP the controller. The bottleneck queue is the queue
with the slowest service rate. Therefore the bottleneck queue of the system
is the only queue greater than zero. In Figure 3.2 the model is described
with the following notation:

• The input rate to the network, u(t).
• An integrator which models the bottleneck queue.
• The output from the bottleneck queue, x(t). This is the integrated

value of the transmission rate, which corresponds to the length of the
queue.

• The forward delay, Tfw, from the sender to the bottleneck queue.
• The feedback time delay, Tfb, from the bottleneck queue to the receiver

and back to the sender.
• A disturbance, d(t), which models the available bandwidth. Mascolo

also assumes that it is not possible to measure d(t).
• The controller transfer function, RTCP (s).
• Finally we have the reference signal, r(t). This corresponds to the

total size of the bottleneck queue available for this particular flow.

Thus, we have the connection between r and x:

x =
1
s

(
e−sTfwRTCP (s)e−sTfb(r − x)− d

)
(3.6)
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Figure 3.3. The equivalent system, using a Smith predictor.

and after some calculation we get the transfer function from r to x as:

x =
1
se
−sTfwRTCP (s)e−sTfb

1 + 1
se
−sTfwRTCP (s)e−sTfb

r =
RTCP (s)1

se
−sTrt

1 +RTCP (s)1
se
−sTrt

r (3.7)

where Trt = Tfw + Tfb represents the total round trip time.
If we compare this expression with the discussion in Section 3.1, and

especially Equation (3.4) we see that RTCP (s) corresponds to R(s) and 1
s

corresponds to G(s). Thus, we need to find a controller, R̃(s), to nicely
control the integrator. The simplest way is to let R̃(s) = K, where K is a
constant. When using Equation (3.5) with G(s) = 1

s and R̃(s) = K we get

RTCP (s) =
K

1 + (1− e−sTrt)K 1
s

. (3.8)

This gives us the resulting closed loop system shown in Figure 3.3.
This is how TCP should perform if you follow Smith’s proposal, and use

proportional controlling for the system without the time delay. In the time
domain this corresponds to the input rate control equation

u(t) = K(r(t− Tfb)− x(t− Tfb)−
∫ t

t−Trt
u(τ)dτ). (3.9)

This means that the input rate, u(t), is proportional to the space left in the
buffer, r(t−Tfb)−x(t−Tfb), decreased by the packets sent during the last
round trip time, i.e. the packets that are sent but not yet acknowledged.

Mascolo has also carried out the mathematical analysis to show that
this control law satisfies stability and utilization conditions, i.e. it ensures
that the bottleneck queue is not overflowed and also that it is never empty.
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3.2.2 TCP and a Smith Predictor

Since the control law of TCP is window based we need to transform Equa-
tion (3.9) to a window based equation. Mascolo does this by considering
the sample time, Ts. We can then interpret the amount of data u(t)Ts as
a Window, W, of data that can be sent at time t. Equation (3.9) can be
rewritten as follows

W = u(t)Ts = TsK

(
r(t− Tfb)− x(t− Tfb)−

∫ t

t−Trt
u(τ)dτ

)
. (3.10)

The window W will represent an impulse of data, sent at time t. At every
sample time, W data is sent. This is asumed to happen instantly.

In the previous discussion about TCP’s congestion control, we defined
the outstanding packets as the packets sent by the sender but not yet ac-
knowledged. Therefore we have, with Mascolo’s notation

PacketsOut =
∫ t

t−Trt
u(τ)dτ. (3.11)

As Mascolo points out, this integral comes from the Smith predictor and
it follows that TCP already implements a Smith predictor, though developed
through heuristic arguments. The remaining quantity r(t−Tfb)−x(t−Tfb)
is the space left in the bottleneck queue, i.e. it is the minimum free buffer
space over the connection, including the receiver’s buffer. If we denote the
free space remaining in the i-th buffer by, Bi, we can see that

r(t− Tfb)− x(t− Tfb) = min{Bi,AdvWnd}. (3.12)

This is the Generalized Advertised Window, GAW. The minimum is taken
over all the buffers encountered by the TCP connection on its path from
the sender to the receiver. We can now rewrite Equation (3.9) as

W = TsK(GAW− PacketsOut) (3.13)

and for K = 1/Ts

W = (GAW− PacketsOut) (3.14)

This means that when the sender receives a GAW in a packet, W packets
are sent. Since we do not need the round trip time to compute the number
of outstanding packets, the window control equation automatically takes
into account variations in RTT. The GAW is stored where today’s TCP
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Figure 3.4. The bottleneck queue length.

stores the AdvWnd. Thus, combining the flow control equation (2.1) and
Equation (3.14) we get

MaxSend = W = min{cwnd,GAW} − PacketsOut (3.15)

To implement this in the today’s TCP, we only need to make sure that
the routers stamp the size of the space left in the queue if it is smaller
than the existing value. Then TCP’s flow control can run unchanged using
Equation (3.15) instead of Equation (2.1). This version of the TCP will be
referred to as feedback TCP.

3.3 Performance of a Feedback Solution for TCP

Mascolo’s suggestion was easily added to the used model, and we will now
look at the performance. The control law ensured that the bottleneck queue
would never be overflowed, i.e. no packet losses. This is also confirmed by
the simulations. This means that problem 1 is addressed.

One of the problems with TCP was the oscillating bandwidth use. Fig-
ure 3.4 shows the histogram over the bottleneck queue length for active
connections with feedback. We see a peak and that the queue is almost
never full. We also see that there is still a large amount of time when
the queue is empty. Thus, compared with ordinary TCP (Figure 2.6 on
page 13), we have improved the use of the bandwidth, but not optimized it.
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Figure 3.5. The round trip time estimate for ordinary TCP (left) and feedback
TCP.

In theory the feedback control scheme should make sure that the bottleneck
queue is never empty. We see that this is not the case. This is probably
caused by the cwnd in Equation (3.15). Ordinary TCP had troubles with
adapting to changes in the round trip time, and since the feedback TCP
uses the same updating algorithm for the round trip time estimate this will
also be the case here. Thus the false timeouts will keep the cwnd on a lower
level than necessary until we find some kind of equilibrium.

Also, we have seen that the time delay of the TCP connection causes
problems. This time delay is estimated by the hosts, during a connection,
and stored as an internal parameter, the RTT estimate. The histograms
over these estimates for the two different implementations are shown in
Figure 3.5. The means and the standard deviations are indicated with
the white vertical lines. Table 3.1 also shows the numerical values of the
means and the variances for the two roundtrip time estimates. We see
that the value of the estimate is slightly smaller and not as spread for the
feedback TCP as it is for the ordinary TCP. Ordinary TCP also experiences
congestion, which result in large delays, as we can see.

Figure 3.6 shows the sender side during a connection with the same setup
as for the ordinary TCP in Figure 2.5. We see that after approximately
50 packets, the equilibrium is reached. Remember that this setup only
considers one TCP connection and no shared bandwidth. This means that
the available bandwidth for this connection is constant. In reality, when the
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Table 3.1. The means and the variances for the round trip time estimates of the
two TCP implementations.

For ordinary TCP: mean, m1, 5.4133
variance, v1, 6.6302

For feedback TCP: mean, m2, 5.0751
variance, v2, 4.9069
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Figure 3.6. The sender side of a feedback TCP connection.

number of TCP connections sharing the same bottleneck queue varies over
time, this adaptiveness is good.

We have seen that feedback TCP performs better than ordinary TCP.
We also saw that the theory and practice did not always agree. E.g. the
feedback scheme did not, in practice, ensure full utilization. Some questions
still remain unanswered:

a. what impact would a discrete solution have,
b. what happens when the scheme is used in multiple connections,
c. what happens when both ordinary TCP and feedback TCP are used

in the same network,
d. could the value of K, 6= 1

Ts
, be tuned to increase performance,

e. could another controller, R̃(s) 6= K, be used.

To answer these questions we need to
i. build a discrete mathematical model,
ii. extend the Simulink model,
iii. implement the solutions in a real Internet environment, and
iv. calculate the solutions when using different controllers.



Chapter 4
Conclusions

We have seen that Internet is a broad area of research, only on improving
the control properties there are numerous directions and proposals. A sig-
nificant amount of work has been done on improving the performance of
TCP. There are two major directions that have made more progress than
others: Proposals to change or extend the way to notify TCP about conges-
tion and proposals to apply automatic control theory. Both require changes
in the routers and some minor additions to the protocol. There is also a
proposal that combines these two. The work with a new way of conges-
tion notification has experienced some problems with fairness towards other
control algorithms. Competing connections using another control algorithm
might not get their appropriate bandwidth share. The work with a control
theoretic background has come up with a reliable proposal.

Simulations of this latter proposal compared with the ordinary TCP
show improvements, the major one being that we get no packet losses for
a single connection. It also decreases the system delay and stabilizes the
traffic load. We conclude that feedback control can be very useful in a
communication system such as the Internet, despite the time delays.

When studying the Internet, we are dealing with a discrete-time system.
Thus, it would be interesting to model this fact. The feedback solution is,
as we have seen, based on a continuous-time model of the traffic flow. The
feedback solution also uses a proportional controller and the performance

25
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might very well be increased by tuning the value of the proportional con-
stant or even using another controller. The simulation model could also
be extended to show the behavior of multiple connections, since we do not
know how ordinary and feedback TCP work together. In the existing TCP
we have a good base with a lot of improvement aspects to consider.



Appendix A
Modeling TCP in Simulink and

StateFlow

In this section we will describe the model that has been used for carrying
out simulations. The model was made using Simulink and StateFlow

in MatLab 6.0. Documentation for these programs can be found in [1].
In StateFlow modeling is based upon states and events. Different events
and conditions define when transitions between states can occur. To make
it easier to understand in the following model description, we will now use
Figure A.1 to explain some things about StateFlow. The corresponding
StateFlow-expressions to each description are described in the parenthesis
after each explanation.

• There are two states, Main/ and Noconnect/.

• Noconnect/ is the default start state (the arrow with a loose starting
point).

• A transition from Noconnect/ to Main/ occurs on the event UpStart
and when this happens the output data ackno is set to the input data
seqno +1 (/ackno=seqno+1;).

• When we are in Main/ the ackno is updated according to a Matlab

function “ack1” that takes the arguments ackno and seqno
(ackno=ml(’ack1(%g,%g)’,ackno,seqno)).

27
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TCPunit/StoreAndSend/AckNo.

Printed 04−Sep−2000 16:39:10

UpStart/ackno=seqno+1;

Done/ackno=0;

Incoming[seqno>ackno]...
{outoforder;}

Main/
during:
  ackno=ml(’ack1(%g,%g)’,ackno,seqno); Noconnect/

Figure A.1. StateFlow block for reference.

• On the event Incoming and if the seqno is larger than the ackno the
inner transition will occur and the event outoforder will be broadcasted
(Incoming[seqno>ackno]{outoforder;}).

• On the event Done we will go from state Main/ to state Noconnect/
and ackno will be set to zero (Done/ackno= 0;).

• Later on we will also see that states can have dashed borders. This
means that these states can be active at the same time, “AND con-
figuration”.

We will start on the top layer of the model and work our way down. In
Figure A.2 the structure of the model is shown as a tree. Square boxes rep-
resent Simulink blocks and boxes with rounded corners represent State-

Flow blocks. If the model is carefully examined there will appear to be
unnecessary steps, especially in the StateFlow blocks. Many of these have
been added during simulations due to the performance of StateFlow.

A.1 The TCP Unit

As shown in Figure A.2, the TCP unit consists of three main blocks. One
for the internal parameters, one for contact with other TCP blocks and one
block to take care of the discrete events. The three blocks are connected to
each other as shown in Figure A.3.
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Figure A.2. The TCP model’s structure. Sharpcornered boxes are Simulink

blocks and rounded boxes are StateFlow blocks. They each handle one or more
of the parts of TCP. (QM=Queue manager)
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Table A.1. The different outputs from StoreAndSend

Name Content Recipient
extras AdvWnd, ack no. and size from the

incoming packet
StateUpdate

to receiver Outgoing packet TCP unit
to SF The data MaxSend and the events Up-

Start, Exit, LastData, Incoming and
OutOfOrder

EventControl

sending The packet most recently sent StateUpdate

NewData The event NewData EventControl

A.1.1 StoreAndSend

The StoreAndSend block is shown in detail in Figure A.4. This is where
the communication takes place. StoreAndSend takes the incoming messages
and sends the different information to different blocks of the TCP unit. It
also receives a lot of information from the other blocks. The different output
and input signals are listed in Tables A.1 and A.2, together with a short
description. In the following description a process is the data that is going
to be transmitted to the receiver, e.g. a web site or an ftp-file. Here, such a
process is represented only by its size.

On the top level StoreAndSend keeps track of the size of the packets,
with help of the data SizeSelect from EventControl. StoreAndSend also
checks whether the whole process is sent, by knowing the number of the
first packet and the size of the whole process and the size of each packet.

AckNo.

The block AckNo. is only keeping track of the incoming packets sequence
numbers and computes the appropriate acknowledgment number. The en-
tire block is shown in Figure A.5.

SeqNo.

The block SeqNo. updates the sequence number every time a new packet is
sent, see Figure A.6.
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Table A.2. The different inputs to StoreAndSend

Name Content Sender
from TCP The internal parameters, e.g. cwnd,

ssthresh and MaxSend
StateUpdate

incoming data
to send

simulates the size of a new process Poisson process

from receiver Incoming packet Other TCP unit
from SF the data Retransmit and SizeSelect

and the events Send and NewInfo
EventControl

LostPacket The lost packet that is going to be
retransmitted

StateUpdate

LOAD Event that controls when the TCP
unit is ready for a new process

EventControl &
On/Off process

Done Event when the transmission is com-
plete

EventControl

start the clock pulse square wave

seq no.
AdvWnd
ack no.

size

seq no.
AdvWnd
ack no.
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NewData
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Figure A.4. StoreAndSend takes care of the communication with other hosts.
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TCPunit/StoreAndSend/AckNo.

Printed 04−Sep−2000 16:39:10

UpStart/ackno=seqno+1;

Done/ackno=0;

Incoming[seqno>ackno]...
{outoforder;}

Main/
during:
  ackno=ml(’ack1(%g,%g)’,ackno,seqno); Noconnect/

Figure A.5. StoreAndSend/AckNo.

TCPunit/StoreAndSend/SeqNo.

Printed 04−Sep−2000 16:55:24

[seqno==0]...
{seqno=MaxSeqNumber;}

Send[Retransmit<=0.5]

Update/
exit:
  seqno=ml(’mod(%g,%g)’,seqno+1,MaxSeqNumber);

Figure A.6. StoreAndSend/SeqNo.

AdvWnd

Depending on whether we are using the model proposed by Mascolo or
not, the block AdvWnd computes the Advertised Window accordingly, see
Figure A.7.

Processqueue

The Processqueue (Figure A.8) simulates the time for the host to process
the incoming data. A sequence of data can not be processed unless all
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TCPunit/StoreAndSend/AdvWnd

Printed 04−Sep−2000 16:39:24

UpStart[Mascolo==1]

Done

Main/
during:
  AdvWnd=ml(’min(%g,%g)’,BufferSize−Num,B);

Noconnect/
AdvWnd=BufferSize−Num;

Figure A.7. StoreAndSend/AdvWnd

sequences before have arrived, i.e. the packets have to come in the correct
order. The packets that arrived in the wrong order are stored in the queue
saveforlater until all the sequences before have arrived, i.e. until the host’s
acknowledgment number is larger than the sequence number. The ‘in-order’
data packets and their corresponding process times are located in the two
other queues.
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Figure A.8. StoreAndSend/Processqueue

QM The block QM (short for queue manager) calculates the process time
for each packet and ‘Pops’ and ‘Pushes’ on appropriate times for the three
different queues. The waiting time is a linear function of the size plus a
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Gaussian error. This models the fact that the hosts will use more time for
large packets than for small ones.

TCPunit/StoreAndSend/Processqueue/QueueManager

Printed 04−Sep−2000 17:13:09

start[time>=Out]{Pop;}

start[Num>0&i>0]...
{i=0;pop;}[num>0&c==1]...

{popf;c=0;}

start[c==0&(out<ackno|...
   Size==−2)]{c++;}

[Size>0]...
{Push;}

[Size==−2]...
{UpStart;}

[Size==−1]...
{Exit;}

Main/
during:
  servicetime=Size*0.1+error;
on Done:
  Clear;c=1;

Service/ 1

Pass/
on start:
  i++;Arrival/ 2

In/
on Incoming:
  pushf;

Out/
entry:
  time=0;
on start:
  time++;

Figure A.9. StoreAndSend/Processqueue/QM

A.1.2 StateUpdate

The block StateUpdate keeps all the inside information. It also communi-
cates with the other blocks in the TCP unit and the different outputs and
inputs to the block are listed in Tables A.3 and A.4.

The main task for StateUpdate is to use the incoming information to
detect congestion. For this it uses two subblocks. On the top level, see Fig-
ure A.10, StateUpdate stores some information and sends other information
to the other blocks in the unit.

Congestion?

In the Congestion? block (Figure A.11) the sent packets are stored until
a corresponding ack is received. This is to make it possible to retransmit
the original packet when congestion occurs. The send time is also stored
to decide whether we have a Timeout or not. When using Simulink to
implement this, the drawback is that you cannot pick an arbitrary packet
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Table A.3. The different outputs from StateUpdate

Name Content Recipient
extras AdvWnd, ack no. and size from the

incoming packet
StateUpdate

states cwnd, ssthresh, MaxSend and the num-
ber of duplicate acks plus some extra
parameters for internal control

StoreAndSend

RTT The calculated round trip time workspace
to SF The events LostPacket and ackE and

the data Stall and timeout
EventControl

LostPacket The lost packet that is going to be re-
transmitted

StoreAndSend

Table A.4. The different inputs to StateUpdate

Name Content Sender
receive info Information from the last received

packet, ack no., AdvWnd, and the
event Incoming

StoreAndSend

is sending The last sent packet and the event
Sending

StoreAndSend

start the clock pulse square wave
Done Event when the transmission is com-

plete
EventControl

from the queue to retransmit, but you have to simply send the next in line.
In most cases this will be the correct one, but there are special cases that
will cause some problems.

Congestion The block Congestion stores the internal parameters, cwnd,
ssthresh, MaxSend and PacketsOut and also updates them through the simu-
lation. In Figure A.12 we see that different parts of the block are responsible
for different actions. Every time a message arrives all the parameters are
updated. Different updating rules apply in different situations, which cor-
responds to the different possible paths in the substate Arrival/.

To notify the rest of the unit about congestion the parameter lostpacket
is used. lostpacket also enables the output from the Queue in the superblock
Congestion?, from the start of the congestion until the lost packet has been
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Figure A.10. StateUpdate handles the internal parameters.

retransmitted. During Timeout the TCP unit continues to retransmit until
all the packets have been retransmitted or until a new packet arrives, i.e. one
round trip time. This is ensured by the substate Around/ in Pop/.

The parameter Stall is only used to make sure that every part of the
unit is done with everything before the next packet is sent.

RTT estimation

In RTT estimation TCP’s calculation of the round trip time is carried out.
A sequence number is saved until the corresponding ack arrives and then
a new value of the RTT is calculated. Figure A.13 shows the Simulink

implementation of this.

A.1.3 EventControl

The block EventControl decides when things happen and if they are al-
lowed to happen, e.g. when a sending takes place. In Figure A.14 we see
that different things happen in different phases of the transmission. The
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Figure A.11. StateUpdate/Congestion?

transmission can either be down, initializing, running or exiting. The pa-
rameter MaxSend and the event Congestion are used to stop the transmission
or start it from somewhere else. The little circle with an H in it remembers
the previous configuration of the state, i.e. when exiting the state Conges-
tion we will automatically continue from where we were in Main/ when the
event Congestion took place. If we have data to send, a packet is sent on
every clock pulse and if we have no data a packet is sent as a response of
incoming ones.

A.2 The Network Model

Since this model was built to show TCP’s behavior, the model of the network
is very simple: one link with three “routers” in each direction. As mentioned
in section 2.3 the waiting times in the routers are functions of the packet
size. This is to simulate that the packets occupy one cell per bit in reality.

A.2.1 Networkqueue & MascoloQueue

To implement the feedback control scheme proposed by Mascolo as dis-
cussed in section 3.2 only a few changes were needed in the “network”. In
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TCPunit/StateUpdate/Congestion?/Congestion

Printed 04−Sep−2000 16:57:45

[seqno>=newack|...
seqno==lastsent]

[seqno~=0&seqno<...
newack&num~=0]

[lastsent<sent[0]]...
{lastsent=sent[0];...
size=sent[1];}

[size==−2]...
{startseq=lastsent;}

/tiout=0;k=0;j=1;

[sent[1]==−2]{Push;}Incoming

TO[j==1]/toseq=lastsent;

[seqno==toseq&k==2|...
t−time>=r]{Pop;} Incoming...

[newack==0]start...
[k==1]...
{k++;}

[num==1&...
(seqno==0)]...
{Pop;} Sending[seqno~=...

toseq|k~=2]{k=0;} /ssthresh=12;
start[c>0&tiout==0]{lostpacket=0;c=0;}

Incoming

/acks=0;aseq=0;
toseq=0;j=0;

[aseq>0]{cwnd=...
ssthresh+acks;}[Stall==0]

[cwnd>ssthresh]...
{cwnd=cwnd+arrived/cwnd;}

/ssthresh=...
ml(’max(0.5*%g,2)’,PO);

[toseq>0&tiout==0&...
j==1]{cwnd=1;}

/cwnd=cwnd+arrived;

[aseq>0&j==2]{cwnd=ssthresh;}

[n==0&acks~=0&j~=2]{j=2;...
aseq=lastsent;}

[newack<=lastsent&...
newack==lastack]...
{acks++;}[(n~=0|acks==0)&...

TimeOut>=0.5&...
newack<=seqno]{j=1;}

Done/Clear;

[newack~=lastack]Sending/Push;

[newack>seqE&...
seqE~=0]{ackE;seqE=0;}[size==−1&seqE==0]...

{seqE=lastsent;}

Running/
during:
  PO=lastsent−max(newack−1,startseq);
  MaxSend=ml(’min(%g,%g)’,cwnd,AdvWnd)−PO;
  arrived=newack−max(lastack,startseq);
  states[1]=cwnd;
  states[2]=ssthresh;
  states[3]=MaxSend;
  states[4]=acks;
  states[5]=toseq;
  states[6]=lastsent;
  n=ml(’mod(%g,3)’,acks);

During/ 1 Pop/ 2Popping/
entry:
Stall=1;
on start:
  Pop;j=0; Nothing/

entry:
  Stall=0;

Around/
TimeOut/
entry:
  tiout=1;
  Stall=0;
  time=t;
exit:
  Stall=1;

W/
on start:
  k++;Pop;Second/ 3

Congestion/
entry:
  lostpacket=1;TO;
  cwnd=(1−TimeOut)*...
     (ssthresh+acks−1)+1;
on Sending:c++;

Stopped/
during:
  j=0;k=0;n=1;c=0;
  lostpacket=0;
  tiout=0;i=0;
  seqE=0;Stall=0;
  lastsent=0;
  size=0;acks=0;
  toseq=0;cwnd=1;
  startseq=0;

Arrival/ 4Incoming/Sending/

Exitack/ 5

Figure A.12. StateUpdate/Congestion?/Congestion
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Figures A.15 and A.16, we see the similarities between the two versions.
The incoming packets and their corresponding waiting times are stored and
in MascoloQueue the packets are ‘stamped’ if their stored value is greater
than the space left in this queue.
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TCPunit/EventControl

Printed 04−Sep−2000 16:57:09

[Stall==0&(MaxSend>0|j==0)&...
(j==0|timeout==1)]...
{Send;c++;j++;}

[c>=MaxSend]

Congestion/Retransmit=1;c=0;j=0;

start[MaxSend>0] start[j>0&timeout==0]{j=0;Retransmit=0;}

UpStart

Incoming/SizeSelect=3;
NewData/newdata=0;

UpStart

start[exitsend>0]{exitsend=0;Done;}
start[i==1]{i=0;}start[i==1]{i=0;}

[ld>0]{ld=0;}

Incoming

[exitrcv>0|s>0]{s=0;}

/Send;c++;

[timer>TCPdelay]start

/NewInfo;c=0;

[exitrcv>0&exitsend==0]{SizeSelect=4;}

Incoming|outoforder

NewData
[exitrcv>0&exitsend>0]

CannotSend/
entry:
 NewInfo;c=0;
on Incoming:
  NewInfo;c=0;s++;
on Exit:
  exitrcv++;
on LastData:
  ld++;

Congestion/
entry:
  NewInfo;c=0;k=0;
on Incoming:
 NewInfo;c=0;s++;
on Exit:
  exitrcv++;
on LastData:
  ld++;

Main/
on Exit:
  exitrcv++;
on Incoming:
  NewInfo;c=0;
on LastData:
  ld++;

Initiate/
entry:
  Send;c++;
  NewInfo;c=0;

From1/

From2/

Down/
exit:
  SizeSelect=5;

To/

Running/
LastData/
entry:
  SizeSelect=2;
on start:
  Send;c++;i++;

Exit/
entry:
  SizeSelect=4;
on start:
  Send;c++;i++;
  exitsend++;

Exiting/
entry:
  newdata=1;
  timer=0;
exit:
  c=0;exitrcv=0;
on ackE:
 exitsend++;

NoData/
entry:
  SizeSelect=3;

Data/
entry:
  SizeSelect=1;
  newdata=0;
on start:
  Send;c++;

Paus/
exit:
  Send; delay/

on start:
  timer++;
entry:
  timer=0;

H
H

H

Figure A.14. EventControl controls the discrete events.
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Figure A.15. Networkqueue used when modeling TCP as it is.

QueueManager

The QueueManager (Figure A.17) calculates the waiting time and performs
‘Pops’ and ‘Pushes’ to the two queues in the superblock, at appropriate
times. The block QueueManager in the MascoloQueue works in the same
way.
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Figure A.16. MascoloQueue used when modeling TCP with a Smith predictor.

TCPlib/Networkqueue/QM

Printed 04−Sep−2000 17:16:49

start[time>=Out]{Pop;}

start[(c>0&Num>0)]{c=0;pop;}

Main/
during:
  waitingtime=10+size*0.05+error−1;
on Incoming:
  Push;

Pass/
on start:
  c++;

Out/
entry:
  time=0;
on start:
  time++;

Figure A.17. Networkqueue/QueueManager



Appendix B
A Summary of the Research in the

Area

In this chapter some articles from different areas of research are briefly sum-
marized. When possible, the control parameters are listed and the addressed
problem from Section 2.2 is indicated. Also, we try to summarize the work
in each research area. Table B.1 lists commonly used terms in this chapter,
with a short explanation.

B.1 Traffic Modeling

A Markovian Approach for Modeling Packet Traffic with Long-Range De-
pendence, Andersen and Nielsen [3]:

The paper models packet traffic with superpositions of two-state MMPP’s.
(MMPP = Markov Modulated Poisson Process). An MMPP is a counting
process with dependent counters (two-state means two counters). Each
counter is Poisson distributed. The result is itself a MMPP, a special case
of a Markov Arrival Process, MAP.

The M/G/1 Queue with Heavy-Tailed Service Time Distribution, Boxma
and Cohen [8]:

Long range dependence in a traffic process is modeled with a fluid queue
fed by one or more on/off sources. The on-period has nonexponential heavy-
tail behavior: Pr[A > t] t→∞∼ hςt

−ς . Explicit expressions are derived for the

41
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Table B.1. Explanations to common terms.
Available Bit
Rate service

allows non-real time data traffic to use bandwidth that is
assigned to real time traffic but temporarily left unused.

end-to-end we do not care about the interior of the network, only
the end hosts

fairness the share of the bandwidth should not depend on the
used protocol

heterogenous different packets have different requirements concerning
reliability and timing

on/off source is either one or zero with some distributions for the up
or down events

Reno & Tahoe different versions of the TCP, Reno is the latest of the
two

traffic class e.g. video streams, ftp files, web pages.
transport-level The level of the network where the control is done, usu-

ally only at the end hosts.

M/G/1-queue. (The arrival rate is Markovian, the service rate is general
and it is a single queue.)

Summary of section. The prevailing traffic model is some kind of on/off
process with different mean arrival rate and holding times for different traffic
classes. Mostly the arrivals are considered Poisson distributed. See also
Section B.2.

B.2 Router Modeling

Virtual Partitioning for Robust Resource Sharing: Computational Tech-
niques for Heterogeneous Traffic, Borst and Mitra [7]:

Virtual partitioning is a scheme for sharing a resource (e.g. a link or a
buffer) among several traffic classes. First, each class is given a nominal
capacity. The scheme will then give higher priority to underloaded classes.
It is efficient, fair and robust. Expressions for blocking probabilities are
derived. It models traffic as Markov On/Off.

• controllers: blocking, acceptance region, required capacity, reservation
mechanisms, link occupancy, (priority).

• measures: blocking rate, link occupancy.
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A Framework for Optimizing the Cost and Performance of Next-Generation
IP Routers, Chan et al. [10]:

The paper develops an analytical framework to model and analyze the
impact of technological factors on cost performance in distributed routers.
The main goal is to divide the decisions between an ensemble of forwarding
engines, instead of one centralized engine per router. It discusses two router
models, distributed and parallel router architecture and it models traffic as
Poisson.

B.3 Flow and Congestion Control

B.3.1 TCP Improvements

Changes in the TCP The following articles discuss different changes
that can be made in the TCP to improve the performance on congestion
and flow control.

TCP behavior of a busy Internet server: analysis and improvements, Bal-
akrishnan et al. [5]:

Designed new application-independent transport-level mechanisms. TCP-
INT (Integrated Congestion Control/Loss Recovery) improves the perfor-
mance of multiple TCP connections. Each host has a single congestion
window for all its parallel TCP connections with a server. Measurements
on a busy Web server show that 6% of the packets are lost, 13% of the
transmissions are retransmissions and 85% of the packets are sent during
slow start.
• controllers: combined cwnd.
• measures: time of last decrease wnd.
• addresses problem: 2.

Random Early Detection gateways for Congestion Avoidance, Floyd and
Jacobson [13]:

Random Early Detection, RED, is used in routers to notify the network
about congestion. It uses the average queue size (avg) to determine whether
or not to mark the packets. If the avg is between some values, then the
packets are marked with a certain probability, if it is higher they are all
marked. The problem is to determine the optimum of these values, as they
are heavily dependent on network characteristics.
• addresses problem: 1 (2).
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Characteristics of an Explicit Rate ABR Algorithm, Johansson and Karlsson
[18]:

This paper evaluates a previously proposed control algorithm. The al-
gorithm combines both the information about the buffer occupancy ([21])
and the input rate ([29]) to control an Available Bit Rate, ABR, service.

Interaction Between TCP Flow Control and ABR Rate Control, Johansson
et al. [19]:

This study considers the interaction between the TCP flow control and
the ABR Explicit Rate control. A comparison between the algorithm from [18]
and the ordinary TCP algorithm is made. The results indicate that TCP’s
behavior after timeouts can be improved using the explicit rate algorithm.

Smith’s predictor for congestion control in TCP Internet protocol, Mascolo
[21]:

The paper proposes that Smith’s predictor is used to design the con-
gestion control algorithm. It reveals that the flow and congestion control
algorithm in today’s TCP already has a Smith’s predictor. It uses Gener-
alized Advertised Window to obtain feedback.
• controls: input rate of TCP connection.
• measures: bottleneck queue length.
• addresses problem: 1,6 (2).

Binary congestion notification in TCP, Sisalem and Schulzrinne [30]:
The paper continues as proposed by Floyd [12]. It uses Binary Con-

gestion Notification, BCN, to enhance the congestion control mechanism in
TCP at the gateways. Switches inform the sources about their congestion
state by setting a congestion bit in the data packets. It also discusses that
Explicit Rate Indication might be a better way to enhance TCP. The issue
of fairness is not investigated thoroughly enough.
• controllers: transmission wnd.
• measures: congestion bit, acks.
• limitations: RTT, efficiency dependent on switch algorithms.
• addresses problem: 1,(2).

Congestion control in TCP: performance of binary congestion notification
enhanced TCP compared to Reno and Tahoe TCP, Sisalem and Schulzrinne
[31]:

This paper discusses performance of BCN-TCP from [30] compared with
Reno and Tahoe. BCN is a good integration base for TCP and available
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bit rate service, ABR, but it suffers from some fairness problems. The
performance on heterogenous traffic is not known. Explicit rate notation
might be worth checking out.

Changes around the TCP The following articles present different im-
provements in the network without changing the TCP.

An end-system architecture for unified congestion management, Rahul et al.
[24]:

The Congestion Manager, CM, is described. The CM maintains conges-
tion and path related information and allows flows to learn from each other.
The paper separates the loss recovery function from congestion manage-
ment. The main components are a rate-control scheme similar to TCP’s, im-
plicit feedback from e.g. acknowledgment packets and a flexible flow sched-
uler. CM ensures that all traffic adheres to basic Internet congestion control
principles. CM also considers the interaction between active flows, unlike
HPF.

The CM is application independent and only a mean to share informa-
tion. Every application can use the CM-functions to find out statistics of
the network.
• addresses problem: 2, 3 .

(RAP: An end-to-end rate-based congestion control mechanism for realtime
streams in the Internet, Rejaie et al. [25]):

The goal is to make realtime streams good network citizens. The idea
is to separate congestion control from error control. The paper presents
the design of Rate Adaption Protocol, RAP. RAP adopts to the AIMD
algorithm, RAP performs loss-based rate control. RAP is TCP-friendly
when TCP uses mostly AIMD, i.e. is mostly in the congestion avoidance
phase. It is a core component of an end-to-end network.

Summary of section. Two major directions can be found. The papers
on Smith’s predictor and GAW [14, 21] discuss the matter of feedback and
also show results compared to other algorithms. Also the papers about
explicit congestion notification [13, 30, 31] show nice results.
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B.3.2 Solutions without TCP

MPLS and traffic engineering in IP networks, Awduche [4]:
Discusses the application of Multiprotocol Label Switching, MPLS, to

traffic engineering in IP networks.
Network = demand system (traffic) + constraint system (interconnected
network elements) + response system (network protocols and processes).
Separate different stages for the traffic engineering process: 1. control pol-
icy formulation, 2. network state observation, 3. traffic characterization +
network state analysis, 4. network performance optimization.

MPLS allows routing control capabilities to be introduced in IP net-
works. MPLS simplifies the network design compared to an overlay model.
The route is determined at the origination node. The model consists of
four basic elements: Path management, traffic assignment, network state
information variation and network management.
• controls: labelswitched paths (LSP).
• measures: detection of congestion.

Load Balancing and Control for Distributed World Wide Web Servers, Cas-
tro et al. [9]:

This paper describes a load balancing and control algorithm for multi-
computer Web servers. The algorithm ontrols the request rate to web server
engines and makes full processing capacity of each engine available. It re-
quires no prior knowledge of relative speeds of the engines, nor the work
required for each request. (Eddie Open Source Project)
• controls: fraction of accepted sessions to each server, fraction of re-

jected sessions.
• measures: processor load/queue length.

An adaptive transport protocol for multimedia communication, Dwyer et al.
[11]:

Describes new transport protocol, HPF, for supporting heterogenous
packet flows. Separates policies (controlled by the application) and mecha-
nisms (controlled by the transport layer). Support heterogeneity in frame/packet
level and provide effective congestion control in transport layer. HPF uses
the fraction of received packets to control congestion. (TCP uses last ack).
• controls: transmission wnd, ”priority”.
• measures: fraction of received packets.
• limitations: urgent6=reliable, no delay bound.
• addresses problems:4,6.
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A class of end-to-end congestion control algorithms for the Internet, Golestani
and Bhattacharyya [17]:

End-to-end control of user traffic as a global optimization problem.
Comes up with a class of congestion control algorithms. Develops theo-
retical framework to address several topics of increasing importance. Their
Minimum Cost Flow Control (MCFC) algorithm is compared with TCP
Reno.
HPF: a transport protocol for supporting heterogeneous packet flows in the
Internet, Li et al. [20]:

Describes HPF from [11] with more test results.

Flow control and bandwidth management in next generation Internets, Pazos
et al. [23]:

Presents a link layer flow control using: label swapping in the routers,
Class Based Queuing link sharing and ABR Virtual Path Connections.
• measures: Explicit Rate(ER).
• limitations: doesn’t prevent congestion in destination routers.
• addresses problems: 2.

The case for informed transport protocols, Savage et al. [28]:
Propose an approach in which congestion information is shared within

a local area of hosts (e.g. an organization). This avoids TCP’s slow start.
• controls: transmission rate(overall).
• measures: RTT measured by other hosts, acks across connections.
• internal parameters: dropped packet locality.
• addresses problems: 3,(2).

A Queue Growth Rate Based Flow Control Algorithm, Yao and Doray [34]:
Propose a feedback flow control algorithm for ABR flows in ATM net-

works. The algorithm uses explicit rate to control the network. See also [23].
• controls: allowed cell transfer rate (ACR).
• measures: RTT, queue growth rate, link input rate.
• addresses problems: 1.

Summary of section. Here we find three different explicit control al-
gorithms. HPF, [11, 20], which uses the fraction of received packets to
decide further actions. With ER, [23, 34], you use the input rate and queue
growth rate to calculate parameters and decide the allowed cell transfer rate.
From the EddieOpenSource project comes an algorithm for distributed Web
servers, [9], that uses load or queue length to update fraction of accepted
sessions to each server and fraction of rejected sessions.
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B.4 Overview - and - Summary - Articles

On TCP performance in a heterogeneous network: a survey, Barakat et al.
[6]:

The paper summarizes problems that face TCP in the Internet of today,
independent of network type. Main problems are burstiness and coupling
between congestion detection and error control.

Highlights of Signal Processing for Communications, Giannakis [15]:
This collection of articles celebrates the highlights from 50 years of sig-

nal processing technology as it has been applied to communication sys-
tems. Presents articles on: Filter Banks for Signal Representation and
Source Coding. Fractal Geometry and Nonlinear Dynamics in Communi-
cation. Channel Estimation, Equalization and Synchronization. Voiceband
Modems: A Signal Processing Success Story. Antenna Arrays for Wire-
less Networks. Co-Channel Signal Separation and Adaptive Beamforming.
Issues in Military Communications. Time-Frequency for Interference Exci-
sion in Spread-Spectrum Communications. Multicarrier Communications.
Multi-User Communications/Multi-User Detection. Signal Processing for
Communication Networks.

Understanding next generation Internet, Rutkowski [26]:
Next Generation Internet, NGI, is divided into seven sectors; 1. Basic

Technologies; 2. Devices; 3. Networked Platforms; 4. Infrastructure; 5. In-
fostructure; 6. Metastructure; 7. Network Management.

Detour: informed Internet routing and transport, Savage et al. [27]:
This paper describes inefficiencies in routing and transport protocols in

the modern Internet and attempts to quantify these effects. It discusses a
prototype called Detour, a virtual Internet, in which routers tunnel packets
over the commodity Internet instead of using designated links. Detour is a
virtual network testbed to explore the costs and benefits of informed routing
and transport mechanisms.
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