Dynamic Systems

m The core of the course is about linear systems in continuous

Lecture 1: solutions and discrete time.

m Several concepts, e.g. observability, controllability and
input-output descriptions are generalized to the nonlinear case.

m The focus is on analysis.
Torkel Glad L . .
m Examination consists of two hand-in-tasks and a take-home

Reglerteknik, ISY, Linkdpings Universitet exam at the end.
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Linear and General Systems Linear systems and general systems.

1. Solving system equations Linear systems:
2. Observability m Only class of dynamic systems which is (almost) completely
3. Controllability understood.
4. Input-output descriptions m Only clas§ of dynamic systems where you can do most of the
- oL computations you want to.
5. Realizability and realizations _ _ .
. No physical system is exactly linear
6. Canonical forms but
7. Matrix fractions most physical systems are approximately linear under suitable
8. DAEs and general linear systems conditions (by Taylor expansion of nonlinear differential equations)
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Unit mass moving along z-axis with velocity v > 0, under external
force F and aerodynamic drag —cov?

z'J:F—cvz, =0

The force Fy(t) gives the solutions vy () and z(t). Consider
X1 =90 —17g, Xp =z —2zgand u = F — Fy and linearize the system:

X1 = —2cupx1 +uU, X =Xx1

With a(t) = 2cog(t)

i= (_‘ll(t) 8) x+ ((1)) u

This is a time-varying linear system if vy is not constant.
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A general differential equation

x=f(tx), x(t) =x0
is equivalent to an integral equation
x(t) = x0 + /t: Flr,x(1)) dr
which leads to the iteration
() =0+ [ flr() de

If f is Lipschitz continuous the iteration can be shown to converge to
a solution for ty < t < €, provided € is small enough.
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When are time-varying linear systems used?

Linearization around non-equilibrium
Gain scheduling

Transients in Kalman filters

Hybrid systems

Optimal control, finite horizon
Periodic phenomena
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The linear case

x(t) = A(t)x(t), x(to) =xo0
The iteration gives the solution
x(t) = (I)(f, to)XQ
t t 07
Ot 5) =1+/ A(a)da+/ A(al)/ ' A(0s)dowdoy + - - -
S S S

The Peano-Baker series can be shown to converge for arbitrary t and
S.
Special case: A(t) = A (constant)

(t=5)* 2 (t—s)
O(t,s) =+ (t—s)A+——A +oo=e
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Time-varying differential equations in Mathematica Example, cont'd

a(t) =1/(1+t) thus gives

Continued example with a(t) = 1/(1 +t) gives

0 o
A = (T ) (15 =( g )
X = s X = x1 () ( 1 0 (t3) (1+s)log = 1

=it =

DSol ve[{x1' [t] = -x1[t]1/ (L +t), x2"' [t] =x1[t]1}, {xL1[t], x2[t]}, t] Whllea(t) = tgives

1161 - 2 w2ty 5 c2) - er1) Logll + t 0 (=572 0

X - , X - + (o] + -

[ 0= Y (oo ) )
2 2
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Properties of @ Linear system solution

x(t) = A(t)x(t) + B(H)u(t), x(to) = xo

DO(t,t) =1 is given by

%@(t,s) = A(HD(t,s) x(t) = ®(t, tg)xo + /t:(I)(t,S)B(S)u(S)dS

®(t,s) = O(t,0)P(0,s) If y(t) = C(t)x(t), xo = 0, then

t
for all ¢, s, 0. In particular y(t) = / h(t,s)u(s)ds
to

-1 _
O(t,s)" = (s, t) where the impulse response is

h(t,s) = C(t)®(t,s)B(s)
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Discrete time linear systems Carleman linearization

x(t+1) = A(t)x(t) + B(t)u(t)
Forward solution trivial: i =f(x)

x(to +1) = A(to)x(to) + B(to)u(to) has an infinite-dimensional linear representation
x(to + 2) = A(t() + 1)A(t0)x(t0) +A(t() + 1)B(t0)u(t0)+ 7 = Az

+B(to+1)u(to+1)
. For a system affine in the input:
and so on. Compactly written:

o % = f(x) +g(x)u
x(t) = ®(t,to)x(to) + Y ®(t,j+ 1)B(j)u(j)
j=to there is an infinite dimensional Carleman bilinearization

D(t,s) =A(t—1)---A(s+1)A(s)
The backward solution might not exist or might be non-unique,
unless A is invertible.
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z=Az+uDz+ Bu



