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Observability

Continuous time model:

ẋ(t) = f (x(t), u(t)), y(t) = h(x(t), u(t))

Discrete time model:

x(t + 1) = f (x(t), u(t)), y(t) = h(x(t))

Can you compute the state x from the output y and the input u?
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Observability, discrete time:

Look at several points in time to extract more information

y(t) = h(x(t))

y(t + 1) = h(x(t + 1)) = h(f (x(t), u(t)) = h(1)(x(t), u(t))

y(t + 2) = h(1)(x(t + 1), u(t + 1)) = h(1)(f (x(t), u(t)), u(t + 1)) =

h(2)(x(t), u(t), u(t + 1))
...

yt + N) = h(N)(x(t), u(t), u(t + 1), . . . , u(t + N− 1))

This is a system of nonlinear equations in x(t). Solvability implies
observability.
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Observability, continuous time:

Differentiate the output to extract more information

y = h(x)

ẏ = hx(x)ẋ = hx(x)f (x, u) = h(1)(x, u)

ÿ = h(1)x (x, u)ẋ + h(1)u (x, u)u̇ = h(1)x (x, u)f (x, u) + h(1)u (x, u)u̇ =

= h(2)(x, u, u̇)
...

y(N) = h(N)(x, u, u̇, . . . , u(N−1))

This is a system of nonlinear equations in x. Solvability implies
observability.
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No input. Alternative description

Define

Lf = ∑ fi(x)
∂

∂xi

Then

y = h(x)
ẏ = (Lf h)(x)

ÿ = (L2
f h)(x)

...

y(N) = (LN
f h)(x)
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Solvability usually depends on u

Example:
ẋ1 = x2u, ẋ2 = x1x2, y = x1

The system of equations

y = x1

ẏ = x2u

can not be solved for x2 if u = 0.
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Mathematics of equation solving

Linear equations: solvability determined by rank test

Polynomial equations: extensive (and difficult) mathematical
theory (ideals, Gröbner bases, characteristic sets, elimination
theory, cylindrical algebraic decomposition). Very high
computational complexity.

Local properties of general equations: Implicit function theorem.
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Implicit function theorem

Consider the equation
f (x, y) = 0

where the dimensions of x and f are equal (same number of
unknowns and equations).

Assume that

f (xo, yo) = 0, fx(xo, yo) nonsingular

(fx is the Jacobian of f with respect to x)
Then, for all y close to yo the equation has a solution x which is
locally unique.
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Local observability

Compute the Jacobian

J =


hx(x)

h(1)x (x, u, u̇)
...

h(N)
x (x, u, u̇, . . . , u(N−1))


J full rank at x0 ⇒ x is uniquely determined by u, y and their
derivatives in a neighborhood of x0 (implicit function theorem)
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Linear time invariant systems

ẋ = Ax + Bu, y = Cx

The Jacobian J is constant and has the form

J =


C

CA
...

CAN−1


J full rank⇒ x can be solved uniquely (globally)

This is the classical observability test for linear systems

Cayley-Hamilton⇒ no need to take N > n.
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Linear time-varying systems

ẋ = A(t)x + B(t)u, y = C(t)x

The Jacobian J has the form

J =

 C
∂
∂t C + CA

...


See the exercises.
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Quantitative measure of observability

ẋ(t) = A(t)x(t), y(t) = C(t)x(t)

The energy in the output is given by∫ t1

t0

y(t)Ty(t) dt = x(t0)
TM(t0, t1)x(t0)

where M is the Observability Gramian:

M(t0, t1) =
∫ t1

t0

ΦT(t, t0)CT(t)C(t)Φ(t, t0) dt
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Observability and the Gramian

From the definition of the observability Gramian:∫ t1

t0

ΦT(t, t0)CT(t)y(t) dt = M(t0, t1)x(t0)

Theorem:
observability on [t0, t1]⇔M(t0, t1) nonsingular

Note: This is a smoothing estimate of x(t0) based on y(t),
t0 ≤ t ≤ t1.
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Observability, discrete time

Iterating the state equation with u = 0 gives
y(t0)

y(t0 + 1)
. . .

y(t1 − 1)

 =


C(t0)

C(t0+1)A(t0)
...

C(t1−1)A(t1−2) · · ·A(t0)


︸ ︷︷ ︸

O(t0,t1)

x(t0)

x(t0) can be computed from y(t0), . . . , y(t1 − 1) if O(t0, t1) has full
rank.
OTO is the discrete time observability Gramian.
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For constant A and C one can define

O =


C

CA
...

CAn−1


in both continuous and discrete time.

Theorem
The range and null spaces of M(t0, t1)
coincide with
the range and null spaces of OTO

for all t1 > t0.

The corresponding discrete time result is trivial.
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Change of state variables

x = T(z), T one-to-one Tz nonsingular

gives

ż = T−1
z f (T(z), u) = f̃ (z, u), y = h(T(z)) = h̃(z)

To test observability, we have to compute

h̃(1)(z, u) = h̃z(z)f̃ (z, u) = hx(T(z))TzT−1
z f (T(z), u) = h(1)(T(z), u)

In general h̃(j)(z, u, u̇, . . . , u(j−1)) = h(j)(T(z), u, u̇, . . . , u(j−1))
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Change of state variables, cont’d

The Jacobian is

J̃ =


h̃z(z)

h̃(1)z (z, u, u̇)
...

h̃(N)
z (z, u, u̇, . . . , u(N−1))

 =


hx(T(z))Tz

h(1)x (T(z), u, u̇)Tz
...

h(N)
x (T(z), u, u̇, . . . , u(N−1))Tz

 = JTz

Since Tz is nonsingular, the rank of J is the same in both coordinate
systems.
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Change of state variables, linear systems

x = Tz, T nonsingular matrix

gives
ż = T−1AT︸ ︷︷ ︸

Ã

z + T−1B︸ ︷︷ ︸
B̃

u, y = CT︸︷︷︸
C̃

z

Õ =

 C̃
C̃Ã

...

 =

 CT
CTT−1AT

...

 = OT
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Unobservability and observers

Consider the systems

ẋ =

[
0 1
1 0

]
x

y =
[
1 1

]
x

ẋ =

[
0 1
1 0

]
x

y =
[
1 −1

]
x

Both systems are unobservable

One of them can be given a converging observer

For the other one this is not possible

Why?
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Canonical form for observability

ż = T−1AT︸ ︷︷ ︸
Ã

z + T−1B︸ ︷︷ ︸
B̃

u, y = CT︸︷︷︸
C̃

z

Theorem Let the rank of O be r. Then T can be chosen so that

Ã =

(
Ã11 0
Ã21 Ã22

)
, C̃ =

(
C̃11 0

)
where Ã11 is r× r, C̃11 is p× r and Ã11, C̃11 observable. Non-unique
!

Note: The partition of eigenvalues between Ã11 and Ã22 is unique: it
makes sense to speak of “observable” and “unobservable”
eigenvalues.

Similar theorem for time-varying systems, see Rugh.
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PBH tests

Popov 1966, Belevitch 1968, Hautus 1969:
Theorem: A, C observable if and only if

Ap = λp, Cp = 0⇒ p = 0

Theorem: A, C observable if and only if

rank
(

C
sI−A

)
= n

for all complex s.
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Detectability

Detectable system: All eigenvalues of the unobservable part lie
strictly in left half plane.

The following are equivalent:

The system is detectable.

It is possible to choose the observer gain K so that A− KC has
all its eigenvalues strictly in the left half plane.

Proof: PBH and canonical form.
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More on nonlinear observability

The definition of nonlinear observability is tricky. Is it for instance
reasonable to say that the following system is observable?

ẋ = 1

y =

{
0 x < 10100

(x− 10100)2 x ≥ 10100
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Some terminology

ẋ = f (x, u), y = h(x), x(0) = xo

has solution x(t) = π(t, xo, u)
x1, x2 indistinguishable:
h(π(t; x1, u)) = h(π(t; x2, u)), all t ≥ 0, all u
I(x) = all points indistinguishable from x

system observable at x0: I(x0) = {x0}
system observable: I(x0) = {x0} all x0
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More terminology

Often sufficient to distinguish points that are close:

system weakly observable at x0: exists neighborhood (nbh) U
such that I(x0) ∩U = {x0}

Often necessary to distinguish points without moving to far:

x1, x2 U-indistinguishable if they are distinguishable as long
as both trajectories lie entirely in U.

IU(x) = all points U-indistinguishable
from x
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Local weak observability

System locally observable at x0: IU(x0) = {x0} every open
nbh U of x0.
System locally weakly observable at x0: Exists open nbh U of
x0 such that IV(x0) = {x0} for every open nbh V of x0 with
V ⊂ U
System locally weakly observable: locally weakly observable
at every x0;
“x can instantaneously be distinguished from its neighbors”

Relationships:

locally observable ⇒ observable
⇓ ⇓

locally weakly observable ⇒ weakly observable

For a linear system they are all equivalent.
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Lie derivative evaluation (piecewise constant u)

Define f1(x) = f (x, u1)

(Lf1h)(x) = hx(x)f1(x) = ẏ

The Lie-derivative in the direction f1.

More generally, if f = f1 for t1 units of time, f = f2 for t2 units of
time,...(

∂k

∂t1 · · · ∂tk
y(t1 + t2 + · · ·+ tk)

)∣∣∣∣
t1=···=tk=0

=
(
Lf1Lf2 . . . Lfkh

)
(x0)
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Test for local weak observability

Consider all elements of the form

hx, (Lf1h)x, (Lf2h)x, . . . , (Lf1Lf2h)x, . . . , (Lf1Lf2 · · · Lfkh)x, . . .

for all possible choices of u.

Observability rank condition at x0: n linearly independent rows
among these elements
Hermann and Krener 1977:
• Observability rank condition at x0 ⇒ local weak observability at

x0
• Local weak observability for all x⇒ observability rank condition

generic (satisfied on open dense subset)
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