Linear Systems

Lecture 3. Controllability

Torkel Glad

Reglerteknik, ISY, Linköpings Universitet

Torkel Glad Linear Systems 2014, Lecture 3

Example, cont'd

In vector form

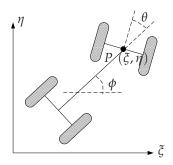
$$\frac{d}{dt} \begin{bmatrix} \theta \\ \phi \\ \xi \\ \eta \end{bmatrix} = u_1 \underbrace{\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{f_0} + u_2 \underbrace{\begin{bmatrix} 0 \\ \sin \theta \\ \cos(\theta + \phi) \\ \sin(\theta + \phi) \end{bmatrix}}_{f_0}$$

How can you span a 4-dimensional space with 2 vectors?

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Controllability. Example

Motion planning for a vehicle:



 u_1 : turning speed of front wheels, u_2 : forward speed

$$\dot{\theta} = u_1, \quad \dot{\phi} = u_2 \sin \theta$$

$$\dot{\xi} = u_2 \cos(\theta + \phi), \quad \dot{\eta} = u_2 \sin(\theta + \phi)$$

Torkel Glad Linear Systems 2014, Lecture 3

The differential equation solution

$$\dot{x} = f(x)$$

Taylor expansion:

$$x(h) = x(0) + h\dot{x}(0) + \frac{h^2}{2}\ddot{x}(0) + O(h^3)$$

Using $\dot{x} = f$, $\ddot{x} = f_x f$

$$x(h) = x(0) + hf(x(0)) + \frac{h^2}{2}(f_x f)(x(0)) + O(h^3)$$

Expanding about $x_o = x(0) + O(h)$

$$x(h) = x(0) + h(f(x_o) + f_x(x_o)(x(0) - x_o)) + \frac{h^2}{2}(f_x f)(x_o) + O(h^3)$$

New directions from Lie brackets

 \blacksquare Start at $x = x_o$.

■ Solve $\dot{x} = f_1(x)$ for $t \in [0, h]$, then $\dot{x} = f_2(x)$ for $t \in [h, 2h]$, then $\dot{x} = -f_1(x)$ for $t \in [2h, 3h]$, then $\dot{x} = -f_2(x)$ for $t \in [3h, 4h]$.

■ The resulting movement is $h^2[f_1,f_2](x_o) + O(h^3)$

• $[f_1, f_2] = f_{2,x}f_1 - f_{1,x}f_2$ is the **Lie bracket**.

■ By doing nested movements one can generate $[f_3, [f_1, f_2]]$, $[[f_1, f_2], [f_3, f_4]]$,

■ If the set of all possible Lie brackets spans the space, then intuitively one should have full controllability.

Torkel Glad Linear Systems 2014, Lecture 3

Properties of Lie bracket

$$[f,g] = g_x f - f_x g$$

Some Lie bracket formulas:

$$[a,a] = 0$$
 $[a,b] = -[b,a]$ $[a+b,c] = [a,c] + [b,c]$ $[a,[b,c]] + [b,[c,a]] + [c,[a,b]] = 0$ Jacobi identity

Lie brackets for car example

$$[f_1, f_2] = \begin{bmatrix} 0 \\ \cos \theta \\ -\sin(\theta + \phi) \\ \cos(\theta + \phi) \end{bmatrix}, \quad [f_2, [f_1, f_2]] = \begin{bmatrix} 0 \\ 0 \\ \sin(\phi) \\ -\cos(\phi) \end{bmatrix},$$

Evaluation at $x_o = 0$:

$$f_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad f_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad [f_1, f_2] = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \quad [f_2, [f_1, f_2]] = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$

Torkel Glad Linear Systems 2014, Lecture 3

Controllability, definitions

- $A_U(x_0)$: the *reachable set* from x_0 , while remaining in the set U
- The system *controllable*: $A_{\mathbb{R}^n}(x) = \mathbb{R}^n$ for any x.

Problem: If U is a small neighborhood A_U is often "one-sided" Often the case for systems with drift term:

$$\dot{x} = f(x) + u_1 g_1(x) + \dots + u_m g_m(x)$$

The natural local property is local accessibility:

- The system *locally accessible* at x:
 - $A_U(x)$ has a nonempty interior for any neighborhood U of x
 - i.e. $A_{II}(x)$ has full dimension.

Controllability, the test:

$\dot{x} = f(x, u)$

- 1. form $f_i(x) = f(x, u_i)$, for all possible constant u_i
- 2. form all possible linear combinations of all possible iterated Lie brackets of the f_i
- 3. Hermann and Krener 1977: If they span the state space at x_0 (controllability rank condition), then the system is locally accessible at x_0 .

Torkel Glad Linear Systems 2014, Lecture 3

To reach with minimum energy

Control from x_0 to x_f with minimum energy:

$$\dot{x}(t)=A(t)x(t)+B(t)u(t),\quad x(t_0)=x_0,\quad x(t_f)=x_f$$
 minimize $J=\frac{1}{2}\int_{t_0}^{t_1}u^Tudt$

The control then has the form

$$u(t) = -B^{T}(t)\Phi^{T}(t_0, t)W(t_0, t_1)^{-1}z, \quad z = x_0 - \Phi(t_0, t_1)x_f$$

where W is the controllability Gramian

$$W(t_0, t_1) = \int_{t_0}^{t_1} \Phi(t_0, t) B(t) B^T(t) \Phi^T(t_0, t) dt$$

Controllability, linear systems

$$\dot{x} = Ax + Bu$$

- \blacksquare $[Ax, b_i] = -Ab_i$, where b_i is a column of B
- $[B, AB, ..., A^{n-1}B]$ full rank \Rightarrow controllability rank condition satisfied.

The linear structure permits much stronger conclusions.

Torkel Glad Linear Systems 2014, Lecture 3

Controllability

The controllability Gramian

$$W(t_0, t_1) = \int_{t_0}^{t_1} \Phi(t_0, t) B(t) B^T(t) \Phi^T(t_0, t) dt$$

Theorem Possible to move the state from x_0 at $t = t_0$ to x_1 at $t = t_1$ \Leftrightarrow $z = x_0 - \Phi(t_0, t_1)x_1$ is in the range space of $W(t_0, t_1)$.

The energy required is

$$J = \frac{1}{2} z^T W(t_0, t_1)^{-1} z$$

Controllability, time invariant case

Time-invariant case (A, B constant):

$$\mathfrak{C} = \begin{pmatrix} B & AB & \cdots & A^{n-1}B \end{pmatrix}$$

Theorem The range and null spaces of $W(t_0, t)$ coincide with the range and null spaces of \mathcal{CC}^T for all $t > t_0$.

Torkel Glad Linear Systems 2014, Lecture 3

Discrete time, time invariant case

 $R(t_0,t_1)$ attains maximum rank after at most n time steps (Cayley-Hamilton). The controllability properties are thus given by

$$C = (B \quad AB \quad \cdots \quad A^{n-1}B) = R(t_0,t_0+n)$$

Controllability theory for time invariant systems is thus the same in continuous and discrete time (\dot{x} replaced by x(t+1)).

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Iterating the state equation gives

$$R(t_0,t_1)U=z$$

where

$$U = [u^{T}(t_{1}-1) \dots u^{T}(t_{0})]^{T}$$

$$z = x(t_{1}) - A(t_{1}-1) \cdots A(t_{0})x(t_{0})$$

$$R(t_{0},t_{1}) = [B(t_{1}-1) A(t_{1}-1)B(t_{1}-2) \dots$$

$$A(t_{1}-1) \cdots A(t_{0}+1)B(t_{0})]$$

It is possible to move from $x(t_0)$ to $x(t_1)$ in the time interval $[t_0, t_1]$ if and only if z is in the range space of $R(t_0,t_1)$.

The minimum value of U^TU is $z^T(RR^T)^{-1}z$. RR^T thus corresponds to the continuous time controllability Gramian.

Torkel Glad Linear Systems 2014, Lecture 3

Change of state variables

$$\dot{x} = Ax + Bu$$
, $y = Cx$, $x = T\bar{x}$, T nonsingular

gives

$$\dot{\bar{x}} = \bar{A}\bar{x} + \bar{B}u$$
, $y = \bar{C}x$
 $\bar{A} = T^{-1}AT$, $\bar{B} = T^{-1}B$, $\bar{C} = CT$, $\bar{C} = T^{-1}C$

Controllability is thus preserved under this *similarity transformation*. **Theorem** Let the rank of \mathbb{C} be r. Then T can be chosen so that

$$ar{A} = egin{pmatrix} ar{A}_{11} & ar{A}_{12} \\ 0 & ar{A}_{22} \end{pmatrix}, \quad ar{B} = egin{pmatrix} ar{B}_{11} \\ 0 \end{pmatrix}$$

where \bar{A}_{11} is $r \times r$, \bar{B}_{11} is $r \times m$ and \bar{A}_{11} , \bar{B}_{11} controllable. Note: The partition of eigenvalues between \bar{A}_{11} and \bar{A}_{22} is unique: "controllable" and "uncontrollable" eigenvalues

The Kalman decomposition theorem

R range space of controllability matrix; N null space of observability matrix

$$T = \begin{bmatrix} T_1 & T_2 & T_3 & T_4 \end{bmatrix}$$

where T_2 basis for $R \cap N$, $[T_2, T_4]$ basis for N, $[T_1, T_2]$ basis for R. Then

$$\dot{z} = \begin{bmatrix} \tilde{A}_{11} & 0 & \tilde{A}_{13} & 0\\ \tilde{A}_{21} & \tilde{A}_{22} & \tilde{A}_{23} & \tilde{A}_{24}\\ 0 & 0 & \tilde{A}_{33} & 0\\ 0 & 0 & \tilde{A}_{43} & \tilde{A}_{44} \end{bmatrix} z + \begin{bmatrix} \tilde{B}_1\\ \tilde{B}_2\\ 0\\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} \tilde{C}_1 & 0 & \tilde{C}_3 & 0 \end{bmatrix}$$

i.e. system decomposed into controllable-observable, controllable-unobservable, uncontrollable-observable and uncontrollable-unobservable parts.

Torkel Glad Linear Systems 2014, Lecture 3

Nonlinear stabilizability

$$\dot{x} = f(x, u), \quad f(x_0, u_0) = 0$$

Is it possible to find a feedback that gives asymptotic stability at x_0 ?

- Linearization around x_0 , u_0 has all "uncontrollable" eigenvalues strictly in left half plane \Rightarrow possible.
- Linearization around x_0 , u_0 has an "uncontrollable" eigenvalue strictly in right half plane ⇒ impossible.
- Difficult case: "uncontrolable" eigenvalues on imaginary axis.

PBH tests

Theorem A, B controllable if and only if

$$p^T A = \lambda p^T$$
, $p^T B = 0 \Rightarrow p = 0$

Theorem A, B controllable if and only if

$$rank(sI - A B) = n$$

for all complex s.

Torkel Glad Linear Systems 2014, Lecture 3

