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Example, cont’d

In vector form
0
sin 0
cos(6 + ¢)
sin(0 + ¢)
—————
h f2

= U +Up

=)=

0 1
¢ 0
¢ 0
n 0

How can you span a 4-dimensional space with 2 vectors?
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Controllability. Example

Motion planning for a vehicle:

W1

uy: turning speed of front wheels, u;: forward speed
9 = Uy, (P = uzsinG
E=1upcos(8+¢), 1 =uysin(6+¢)
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The differential equation solution

*=f(x)
Taylor expansion:

x(h) = x(0) + hx(0) + h;ée(o) +O(K%)

Usingx =f, X = fif

x(h) = x(0) + hf (x(0)) + h;(fxf) (x(0)) +O(K°)

Expanding about x, = x(0) + O(h)

x(h) = x(0) + h(f (x0) + f(x0) (x(0) — x0)) + h;(fxf) (%) +O(K?)
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New directions from Lie brackets

Lie brackets for car example

m Startat x = x,. 0
m Solve x = f1(x) fort € [0, k], then x = f>(x) for t € |h,2h], then _ cos O _
¥ =—fi (xj)rlfg)r)t € [Zi, [3h],]then X = —j;%z((x)) for tee [[3h, 4]h] i fo —sin(0+¢) |’ [ [f1 o]l sin(¢)

m The resulting movement is h2|[fy, f2] (x,) + O(h®) cos(f + ¢) — cos(¢)

o [f1,f2] = faxfi — fif2 is the Lie bracket. Evaluation at x, = 0:
m By doing nested movements one can generate [f3, [f1,f2]],
A f2), I3 fal], e

m If the set of all possible Lie brackets spans the space, then h=
intuitively one should have full controllability.
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Properties of Lie bracket Controllability, definitions

m Ay (xp): the reachable set from xy, while remaining in the set U
[f.8] = &f —fg m The system controllable: Ag«(x) = R" for any x.

Some Lie bracket formulas: Problem: If U is a small neighborhood Ay; is often “one-sided”
Often the case for systems with drift term:

{a,:} =0 - X =f(x) +uig1(x) + - + mgm(x)
a,b| = —\b,a

@b = loc + (b The natural local property is local accessibility:
. 1b.l] - 6, oal] + [e |5 ]] = O Jacob identiy m The system locally accessible at x:

e Ay (x) has a nonempty interior for any neighborhood U of x
e ie. Ay(x) has full dimension.
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Controllability, the test: Controllability, linear systems

= f(x,u)
X = Ax+ Bu
1. form f;(x) = f(x, u;), for all possible constant u;
2. form all possible linear combinations of all possible iterated Lie m [Ax,bj] = —Ab;, where b; is a column of B
brackets of the f; m [B,AB,..., A" 1B] full rank = controllability rank condition

3. Hermann and Krener 1977: If they span the state space at xo satisfied.

(controllability rank condition), then the system is locally The linear structure permits much stronger conclusions.
accessible at xg.
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To reach with minimum energy Controllability

Control from xj to x¢ with minimum energy:

The controllability Gramian

x(t) = A(t)x(t) +B(t)u(t), x(to) =xo0, x(tr) = xf H
o s W(to, 1) = / ®(to, £)B(E)BT (1) DT (t, £) di
minimize | = E/ u” udt to
to
Theorem Possible to move the state from xp att = fptox; att =t
The control then has the form N

= xg — D(to, t1)x1 is in th f W(to, t1).
u(t) = =BT ()@ (to, hW(to, 1) 'z, 2 = xo — D(ko, 1)y z = %o — ®(fo, h)x1 Is in the range space of W(fo, 1)

The energy required is
where W is the controllability Gramian

1 7 1
' = 2TW(to, t
Wito 1) = [ @(t0, )B(BT (697 (o, ) i J = 52 Wito,h) 'z
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Controllability, time invariant case

Time-invariant case (A, B constant):
G:(B AB - A”‘lB)

Theorem The range and null spaces of W(t, t) coincide with the
range and null spaces of CCT for all t > #.
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Discrete time, time invariant case

R(t,t1) attains maximum rank after at most # time steps
(Cayley-Hamilton). The controllability properties are thus given by

C= (B AB --- AnilB) = R(to,i’o-l—n)

Controllability theory for time invariant systems is thus the same in
continuous and discrete time (x replaced by x(t + 1)).
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Iterating the state equation gives
R(tot)U =z
where

U=[ul(n-1) ... ul(s)]"
z=2x(t)— A(t—1) - - - A(to)x(to)
R(tot1) = [B(ti—-1) A(t—1)B(ti-2) ...
A(t-1) - - A(to+1)B(ty)]
It is possible to move from x(t() to x(¢1) in the time interval [to, t1] if
and only if z is in the range space of Rt ).

The minimum value of UTU is zT (RRT)~z. RRT thus corresponds
to the continuous time controllability Gramian.
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Change of state variables

X=Ax+Bu, y=Cx, x=Tx, T nonsingular

X=Ax+Bu, y=~Cx
A=T AT, B=T'B, C=CT, c=T"1¢

Controllability is thus preserved under this similarity transformation.
Theorem Let the rank of € be r. Then T can be chosen so that

s (An An ~_ (Bu
A—(o An) B0
where A1 isr x r, Biy is r x m and A1q, B11 controllable.

Note: The partition of eigenvalues between A1 and Ay, is unique:
“controllable” and “uncontrollable” eigenvalues
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The Kalman decomposition theorem

R range space of controllability matrix; N null space of observability
matrix

T=[T1 To T3 T4

where T basis for RN N, [T, T4] basis for N, [T1, T»] basis for R.
Then

13111 0 13113 0 1:31
Ay Axp Ay Ay B,
0
0

0 0 Ay 0| ]ol|*
0 0 Ap Ay
y=[C1 0 G 0
i.e. system decomposed into controllable-observable,

controllable-unobservable, uncontrollable-observable and
uncontrollable-unobservable parts.

AUTOMATIC CONTROL
Torkel Glad REGLERTEKNIK
Linear Systems 2014, Lecture 3 LINKOPINGS UNIVERSITET
Nonlinear stabilizability

x=f(xu), f(xo,u0)=0
Is it possible to find a feedback that gives asymptotic stability at x,?

m Linearization around x,, u, has all “uncontrollable” eigenvalues
strictly in left half plane = possible.

m Linearization around x,, u, has an “uncontrollable” eigenvalue
strictly in right half plane = impossible.

m Difficult case: “uncontrolable” eigenvalues on imaginary axis.
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PBH tests

Theorem A, B controllable if and only if
pTA= A", pP"B=0=p=0
Theorem A, B controllable if and only if
rank (sl —A B) =n

for all complex s.
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