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Abstract—In this paper, a new particle filter (PF) which we
refer to as the decentralized PF (DPF) is proposed. By first
decomposing the state into two parts, the DPF splits the filtering
problem into two nested sub-problems and then handles the two
nested sub-problems using PFs. The DPF has the advantage over
the regular PF that the DPF can increase the level of parallelism
of the PF. In particular, part of the resampling in the DPF bears
a parallel structure and can thus be implemented in parallel. The
parallel structure of the DPF is created by decomposing the state
space, differing from the parallel structure of the distributed PFs
which is created by dividing the sample space. This difference
results in a couple of unique features of the DPF in contrast with
the existing distributed PFs. Simulation results of two examples
indicate that the DPF has a potential to achieve in a shorter
execution time the same level of performance as the regular PF.

Index Terms—Particle filtering, parallel algorithms, nonlinear
system, state estimation.

I. I NTRODUCTION

In this paper, we study the filtering problem for the follow-
ing nonlinear discrete-time system

ξt+1 = ft(ξt, vt)

yt = ht(ξt, et)
(1)

wheret is the discrete-time index,ξt ∈ R
nξ is the state at time

t, yt ∈ R
ny is the measurement output,vt ∈ R

nv andet ∈ R
ne

are independent noises whose known distributions are indepen-
dent oft, ξt andyt, andft(·) andht(·) are known functions.
The filtering problem consists of recursively estimating the
posterior densityp(ξt|y0:t) where,y0:t , {y0, ..., yt}. Analytic
solutions to the filtering problem are only available for a
relatively small and restricted class of systems, the most
important being the Kalman filter [19] which assumes that
system (1) has a linear-Gaussian structure. A class of powerful
numerical algorithms to the filtering problem are particle filters
(PFs), which are sequential Monte Carlo methods based on
particle representations of probability densities [2]. Since the
seminal work [15], PFs have become an important tool in
handling the nonlinear non-Gaussian filtering problem, and
have found many applications in statistical signal processing,
economics and engineering; see e.g., [2, 12, 14, 16] for recent
surveys of PFs.
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In this paper, a new PF, which we refer to as the decen-
tralized PF (DPF), will be proposed. By first decomposing the
state into two parts, the DPF splits the filtering problem of
system (1) into two nested sub-problems and then handles
the two nested sub-problems using PFs. The DPF has the
advantage over the regular PF that the DPF can increase the
level of parallelism of the PF in the sense that besides the
particle generation and the importance weights calculation,
part of the resampling in the DPF can also be implemented
in parallel. As will be seen from the DPF algorithm, there are
actually two resampling steps in the DPF. The first resampling
in the DPF, like the resampling in the regular PF, cannot be
implemented in parallel, but the second resampling bears a
parallel structure and can thus be implemented in parallel.
Hence, the parallel implementation of the DPF can be used
to shorten the execution time of the PF.

As pointed out in [5], the application of PFs in real-time
systems is limited due to its computational complexity which
is mainly caused by the resampling involved in the PF. The
resampling is essential in the implementation of the PF as
without resampling the variance of the importance weights will
increase over time [13]. The resampling however introduces
a practical problem. The resampling limits the opportunityto
parallelize since all the particles must be combined, although
the particle generation and the importance weights calculation
of the PF can still be realized in parallel [13]. Therefore, the
resampling becomes a bottleneck to shorten the execution time
of the PF. Recently, some distributed resampling algorithms
for parallel implementation of PFs have been proposed in
[5, 22]. The idea of the distributed resampling is to divide
the sample space into several strata or groups such that the
resampling can be performed independently for each stratum
or group and can thus be implemented in parallel. The effect
of different distributed resampling algorithms on the variance
of the importance weights has been analyzed in [22]. Based
on the introduced distributed resampling algorithms, a couple
of distributed PFs have been further proposed in [5, 22], such
as the distributed resampling with proportional allocation PF
(DRPA-PF) and the distributed resampling with nonpropor-
tional allocation PF (DRNA-PF).

The underlying idea of the DPF is different from that of the
existing distributed PFs, while they all have parallel structure.
The parallel structure of the DPF is created by decomposing
the state space, differing from the parallel structure of the
distributed PFs which is created by dividing the sample space.
This difference results in a couple of unique features of
the DPF in contrast with the existing distributed PFs. First,
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Fig. 1. Patterns for points where the posterior densities are com-
puted/estimated. a. A fixed regular grid used in the point-mass filter. b.
Randomly allocated points following the regular PF equations. c. Points
randomly allocated to vertical parallel lines (which themselves are randomly
located) used in the DPF.

compared to the DRPA-PF, the DPF allows a simpler scheme
for particle routing and actually treats each processing element
as a particle in the particle routing. Second, the DPF does
not have the efficiency decrease problem of the DRPA-PF.
Given a PF with parallel structure, it works most efficientlyif
each processing element handles the same number of particles.
However, the efficiency of the DRPA-PF usually decreases,
since the numbers of particles produced by each processing
element are not evenly but randomly distributed among the
processing elements. Third, it will be verified by two numer-
ical examples that, the DPF has the potential to achieve in a
shorter execution time the same level of performance as the
bootstrap PF. In contrast, the DRNA-PF actually trades the PF
performance for the speed improvement [5]. Besides, the level
of parallelism of the DPF can be further increased in two ways
so that the execution time of the parallel implementation of
the DPF can be further shortened; the first one is to utilize
any of the distributed resampling algorithms proposed in [5,
22] to perform the first resampling of the DPF, and the other
is based on an extension of the DPF. As a result, the DPF is
a new option for the application of PFs in real-time systems
and the parallel implementation of PFs.

The rest of the paper is organized as follows. The problem
formulation is given in Section II. In Section III, the DPF
algorithm is first derived and then summarized, and finally
some issues regarding the implementation of the DPF are
discussed. In Section IV, some discussions about the DPF and
its comparison with the existing distributed PFs are made. In
Section V, two numerical examples are elaborated to show the
efficacy of the DPF. Finally, we conclude the paper in Section
VI.

II. PROBLEM FORMULATION

A. Intuitive preview

The formulas for particle filtering tend to look complex, and
it may be easy to get lost in indices and update expressions.
Let us therefore provide a simple and intuitive preview to get
the main ideas across.

Filtering is about determining the posterior densities of the
states. If the state is two-dimensional with componentsx and
z, say, the density is a surface over thex − z plane, see Fig.
1. One way to estimate the density is to fixM points in the
plane in a regular grid (Fig. 1.a) and update the values of
the density according to Bayesian formulas. This is known
as the point-mass filter [3, 6]. Another way is to throwM
points at the plane at random (Fig 1.b), and let them move
to important places in the plane, and update the values of the
densities at the chosen points, using Bayesian formulas. This
is a simplified view of what happens in the regular PF. A
third way is illustrated in Fig 1.c: Let the points move to well
chosen locations, but restrict them to be aligned parallel to one
of the axes (thez-axis in the plot). The parallel lines can move
freely, as can the points on the lines, but there is a restriction
of the pattern as depicted. The algorithm we develop in this
paper (DPF) gives both the movements of the lines and the
positions of the points on the lines, and the density values at
the chosen points, by application of Bayesian formulas.

It is well known that the regular PF outperforms the point-
mass filter with the same number of points, since it can
concentrate them to important areas. One would thus expect
that the DPF would give worse accuracy than the regular PF
with the same number of points, since it is less “flexible” in
the allocation of points. On the other hand, the structure might
allow more efficient ways of calculating new point locations
and weights. That is what we will develop and study in the
following sections.

B. Problem statement

Consider system (1). Suppose that the stateξt can be
decomposed as

ξt =

[

xt

zt

]

(2)

and accordingly that system (1) can be decomposed as

xt+1 = fx
t (xt, zt, v

x
t )

zt+1 = fz
t (xt, zt, v

z
t )

yt = ht(xt, zt, et)

(3)

wherext ∈ R
nx , zt ∈ R

nz , and vt = [(vx
t )T (vz

t )T ]T with
vx

t ∈ R
nvx andvz

t ∈ R
nvz . In the following, it is assumed for

convenience that the probability densitiesp(x0), p(z0|x0) and
for t ≥ 0, p(xt+1|xt, zt), p(zt+1|xt:t+1, zt) and p(yt|xt, zt)
are known.

In this paper, we will study the filtering problem of
recursively estimating the posterior densityp(zt, x0:t|y0:t).
According to the following factorization

p(zt, x0:t|y0:t) = p(zt|x0:t, y0:t)p(x0:t|y0:t) (4)
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where x0:t , {x0, ..., xt}, the filtering problem (4) can be
split into two nested sub-problems:

1) recursively estimating the densityp(x0:t|y0:t);
2) recursively estimating the densityp(zt|x0:t, y0:t).

That the two sub-problems are nested can be seen from Fig.
2 where we have sketched the five steps used to derive the
recurrence relation of the conceptual solution to the filtering
problem (4). Since there is in general no analytic solution
to the filtering problem (4), a numerical algorithm, i.e., the
DPF is introduced to provide recursively the empirical approx-
imations top(x0:t|y0:t) andp(zt|x0:t, y0:t). The DPF actually
handles the two nested sub-problems using PFs. Roughly
speaking, the DPF solves the first sub-problem using a PF with
Nx particles (x(i)

0:t, i = 1, ..., Nx) to estimatep(x0:t|y0:t). Then
the DPF handles the second sub-problem usingNx PFs with
Nz particles each to estimatep(zt|x

(i)
0:t, y0:t), i = 1, ..., Nx.

As a result of the nestedness of the two sub-problems, it
will be seen later that the steps of the PF used to estimate
p(x0:t|y0:t) is nested with that of theNx PFs used to estimate
p(zt|x

(i)
0:t, y0:t).

Remark 2.1:The idea of decomposing the state into two
parts and accordingly splitting the filtering problem into two
nested sub-problems is not new. Actually, it has been used
in the Rao-Blackwellized PF (RBPF); see, e.g, [1, 8, 9, 11, 13,
25]. However, the RBPF imposes certaintractablesubstructure
assumption on the system considered and hence solves one of
the sub-problem with a number of optimal filters, such as the
Kalman filter [19] or the HMM filter [24]. In particular, the
filtering problem (4) has been previously studied in [25] where
system (3) is assumed to be conditionally (onxt) linear in
zt and subject to Gaussian noise. Due to these assumptions,
the statezt of system (3) is marginalized out by using the
Kalman filter. However, since there is no tractable substructure
assumption made on system (3) in this paper, no part of the
stateξt is analytically tractable as was the case in [1, 8, 9, 11,
13, 25]. ♦

In the following, let x̃ ∼ p(x) denote that̃x is a sample
drawn from the densityp(x) of the random variablex,
let N (m, Σ) denote the (multivariate) Gaussian probability
density with mean vectorm and covariance matrixΣ and let
P(A) denote the probability of the eventA. For convenience,
for eachi = 1, ..., N , αi = βi/

∑N

j=1 βj is denoted by

αi ∝ βi;

N
∑

i=1

αi = 1 (5)

whereN is a natural number,αi, βi, i = 1, ..., N , are positive
real numbers, andαi ∝ βi denotes thatαi is proportional to
βi.

III. D ECENTRALIZED PARTICLE FILTER

In this section, the DPF algorithm is first derived and then
summarized. Finally, some issues regarding the implementa-
tion of the DPF are discussed.

We here make a comment regarding some notations used

p(x0:t|y0:t−1)

p(x0:t|y0:t)

p(x0:t+1|y0:t)

p(zt|x0:t, y0:t−1)

p(zt|x0:t, y0:t)

p(zt|x0:t+1, y0:t)

p(zt+1|x0:t+1, y0:t)p(zt+1|xt:t+1, zt)

p(xt+1|x0:t, y0:t) p(xt+1|xt, zt)

p(yt|x0:t, y0:t−1) p(yt|xt, zt)

Fig. 2. Sketch of the steps used to derive the conceptual solution to the
filtering problem (4). Assume that the probability densities p(x0), p(z0|x0)
and for t ≥ 0, p(xt+1|xt, zt), p(zt+1|xt:t+1, zt) and p(yt|xt, zt) are
known. With a slight abuse of notation letp(x0|y0:−1) = p(x0) and
p(z0|x0, y0:−1) = p(z0|x0). Then five steps are needed to derive the
recurrence relation of the conceptual solution to the filtering problem (4).
The specific relations between the different densities can be obtained by
straightforward application of Bayesian formulas and thusare omitted. Instead,
the notationp1(·) → p2(·) is used to indicate that the calculation of the
densityp2(·) makes use of the knowledge of the densityp1(·).

throughout the paper. Suppose we have

PN (dξt) =
1

N

N
∑

i=1

δ
ξ
(i)
t

(dξt) (6)

where δ
ξ
(i)
t

(A) is a Dirac measure for a givenξ(i)
t and a

measurable setA. Then the expectation of any test function
g(ξt) with respect top(ξt) can be approximated by

∫

g(ξt)p(ξt)dξt ≈

∫

g(ξt)PN (dξt) =
1

N

N
∑

i=1

g(ξ
(i)
t ) (7)

Although the distributionPN (dξt) does not have a well
defined density with respect to the Lebesgue measure, it is
a common convention in the particle filtering community [2,
15] to use

pN(ξt) =
1

N

N
∑

i=1

δ(ξt − ξ
(i)
t ) (8)

whereδ(·) is a Dirac delta function, as if it is anempirical
approximation of the probability densityp(ξt) with respect
to the Lebesgue measure. The notations like (8) and the
corresponding terms mentioned above are, in the most rigorous
mathematical sense, not correct. However, they enable one to
avoid the use of measure theory which indeed simplifies the
representation a lot especially when a theoretical convergence
proof is not the concern.

A. Derivation of the DPF algorithm

First, we initialize the particles̃x(i)
0 ∼ p(x0), i = 1, ..., Nx,

and for eachx̃
(i)
0 , the particlesz̃

(i,j)
0 ∼ p(z0|x̃

(i)
0 ), j =

1, ..., Nz. Then the derivation of the DPF algorithm will be
completed in two steps by the induction principle. In the first
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step, we show that Inductive Assumptions 3.1 to 3.3 to be
introduced below hold att = 1. In the second step, assume that
Inductive Assumptions 3.1 to 3.3 hold att for t ≥ 1, then we
show that Inductive Assumptions 3.1 to 3.3 hold recursively
at t + 1.

In the following, we first introduce Inductive Assumptions
3.1 to 3.3 att.

Assumption 3.1:The DPF produceNx particlesx(i)
0:t−1, i =

1, ..., Nx and an unweighted empirical approximation of
p(x0:t−1|y0:t−1) as

p̃Nx
(x0:t−1|y0:t−1) =

1

Nx

Nx
∑

i=1

δ(x0:t−1 − x
(i)
0:t−1) (9)

and for each pathx(i)
0:t−1, i = 1, ..., Nx, the DPF produce

Nz particles z̄
(i,j)
t−1 , j = 1, ..., Nz, and a weighted empirical

approximation ofp(zt−1|x
(i)
0:t−1, y0:t−1) as

pNz
(zt−1|x

(i)
0:t−1, y0:t−1) =

Nz
∑

j=1

q̄
(i,j)
t−1 δ(zt−1 − z̄

(i,j)
t−1 ) (10)

where q̄
(i,j)
t−1 is the importance weight and its definition will

be given in the derivation.
Assumption 3.2:The particlesx̃(i)

t , i = 1, ..., Nx, are gen-
erated according to the proposal functionπ(xt|x

(i)
0:t−1, y0:t−1)

and for eachx̃
(i)
t , i = 1, ..., Nx, the particlesz̃(i,j)

t , j =
1, ..., Nz, are generated according to the proposal function
π(zt|x̃

(i)
0:t, y0:t−1) wherex̃

(i)
0:t , (x

(i)
0:t−1, x̃

(i)
t ).

Assumption 3.3:For eachi = 1, ..., Nx, an approximation
pNz

(yt|x̃
(i)
0:t, y0:t−1) of p(yt|x̃

(i)
0:t, y0:t−1) can be obtained as

pNz
(yt|x̃

(i)
0:t, y0:t−1)

=

Nz
∑

j=1

r̃
(i,j)
t p(yt|x̃

(i)
t , z̃

(i,j)
t )/

Nz
∑

l=1

r̃
(i,l)
t

(11)

with r̃
(i,j)
t = p̃Nz

(z̃
(i,j)
t |x̃

(i)
0:t, y0:t−1)/π(z̃

(i,j)
t |x̃

(i)
0:t, y0:t−1),

where p̃Nz
(z̃

(i,j)
t |x̃

(i)
0:t, y0:t−1) is an approximation of

p(z̃
(i,j)
t |x̃

(i)
0:t, y0:t−1) and its definition will be given in the

derivation.
Remark 3.1:In Inductive Assumptions 3.1 and 3.3,

p̃Nx
(x0:t−1|y0:t−1) andpNz

(zt−1|x
(i)
0:t−1, y0:t−1) are empirical

approximations ofp(x0:t−1|y0:t−1) andp(zt−1|x
(i)
0:t−1, y0:t−1),

respectively. These approximations should of course be as
close to the true underlying density as possible. This closeness
is typically assessed via some test functiongt−1(·) used in the
following sense,

I(gt−1) =

∫

gt−1(zt−1, x0:t−1)

× p(zt−1, x0:t−1|y0:t−1)dzt−1dx0:t−1 (12)

wheregt−1 : R
nz × R

t×nx → R is a test function. With the
empirical approximations defined in (9) and (10), an estimate
INx,Nz

(gt−1) of I(gt−1) is obtained as follows

INx,Nz
(gt−1) =

1

Nx

Nx
∑

i=1

Nz
∑

j=1

q̄
(i,j)
t−1 gt−1(z̄

(i,j)
t−1 , x

(i)
0:t−1) (13)

A convergence result formalizing the “closeness” of (13)
to (12), asNx andNz tend to infinity, will be in line with our
earlier convergence results [18] of the PF for rather arbitrary
unbounded test functions. ♦

Then in the first step we should show that Inductive As-
sumptions 3.1 to 3.3 hold att = 1. However, since the first
step is exactly the same as the second step, we only consider
the second step here due to the space limitation. In the second
step, assume that Inductive Assumptions 3.1 to 3.3 hold att,
then we will show in seven steps that Inductive Assumptions
3.1 to 3.3 recursively hold att + 1.

1) Measurement update ofx0:t based onyt

By using importance sampling, this step aims to de-
rive a weighted empirical approximation ofp(x0:t|y0:t).
Note that an unweighted empirical approximation
p̃Nx

(x0:t−1|y0:t−1) of p(x0:t−1|y0:t−1) has been given as
(9) in Inductive Assumption 3.1, then simple calculation
shows that the following equation holds approximately

p(x0:t|y0:t) ∝ p̃Nx
(x0:t−1|y0:t−1)p(xt|x0:t−1, y0:t−1)

× p(yt|x0:t, y0:t−1) (14)

From Inductive Assumptions 3.1 and 3.2,x
(i)
0:t−1, i =

1, ..., Nx, can be regarded as samples drawn from
p̃Nx

(x0:t−1|y0:t−1), and for i = 1, ..., Nx, x̃
(i)
t is

the sample drawn fromπ(xt|x
(i)
0:t−1, y0:t−1). Therefore

p̃Nx
(x0:t−1|y0:t−1)π(xt|x

(i)
0:t−1, y0:t−1) can be treated as

the importance function. On the other hand, from (10)
and

p(xt|x0:t−1, y0:t−1)

=

∫

p(zt−1|x0:t−1, y0:t−1)p(xt|xt−1, zt−1)dzt

(15)

an approximation pNz
(x̃

(i)
t |x

(i)
0:t−1, y0:t−1) of

p(x̃
(i)
t |x

(i)
0:t−1, y0:t−1) can be obtained as

pNz
(x̃

(i)
t |x

(i)
0:t−1, y0:t−1)

=

Nz
∑

j=1

q̄
(i,j)
t−1 p(x̃

(i)
t |x

(i)
t−1, z̄

(i,j)
t−1 )

(16)

Moreover, an approximationpNz
(yt|x̃

(i)
0:t, y0:t−1) of

p(yt|x̃
(i)
0:t, y0:t−1) has been given as (11) in Inductive

Assumption 3.3.
Now using the importance sampling yields a weighted
empirical approximation ofp(x0:t|y0:t) as

pNx
(x0:t|y0:t) =

Nx
∑

i=1

w
(i)
t δ(x0:t − x̃

(i)
0:t) (17)

wherew
(i)
t is evaluated according to

w
(i)
t ∝

pNz
(yt|x̃

(i)
0:t, y0:t−1)pNz

(x̃
(i)
t |x

(i)
0:t−1, y0:t−1)

π(x̃
(i)
t |x

(i)
0:t−1, y0:t−1)

;

Nx
∑

i=1

w
(i)
t = 1

(18)
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2) Resampling of{x̃(i)
0:t, z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i =

1, ..., Nx

By using resampling, this step aims to derive an un-
weighted empirical approximation ofp(x0:t|y0:t).
ResampleNx times from the discrete distribution over
{{x̃

(i)
0:t, z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i = 1, ..., Nx}

with probability massw(i)
t associated with the element

{x̃
(i)
0:t, z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t } to generate sam-

ples{x(i)
0:t, z̄

(i,1)
t , r

(i,1)
t , ..., z̄

(i,Nz)
t , r

(i,Nz)
t }, i = 1, ..., Nx,

so that for anym,

P{{x(m)
0:t , z̄

(m,1)
t , r

(m,1)
t , ..., z̄

(m,Nz)
t , r

(m,Nz)
t } =

{x̃
(i)
0:t, z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }} = w

(i)
t

(19)

where r
(i,j)
t can be defined as r

(i,j)
t =

p̃Nz
(z̄

(i,j)
t |x

(i)
0:t, y0:t−1)/π(z̄

(i,j)
t |x

(i)
0:t, y0:t−1) according

to the definition of r̃(i,j)
t in Inductive Assumption 3.3

(See Section III-C1 for more detailed explanation).
As a result, it follows from (17) that an unweighted
empirical approximation ofp(x0:t|y0:t) is obtained as

p̃Nx
(x0:t|y0:t) =

1

Nx

Nx
∑

i=1

δ(x0:t − x
(i)
0:t) (20)

3) Measurement update ofzt based onyt

By using importance sampling, this step aims to derive
a weighted empirical approximation ofp(zt|x

(i)
0:t, y0:t).

Simple calculation shows that

p(zt|x
(i)
0:t, y0:t) ∝ p(zt|x

(i)
0:t, y0:t−1)p(yt|x

(i)
t , zt) (21)

From Inductive Assumption 3.2, for eachx(i)
t , i =

1, ..., Nx, the particlesz̄(i,j)
t , j = 1, ..., Nz, are gener-

ated from the proposal functionπ(zt|x
(i)
0:t, y0:t−1). There-

fore π(zt|x
(i)
0:t, y0:t−1) is chosen as the importance func-

tion. On the other hand, note that an approximation
p̃Nz

(z̄
(i,j)
t |x

(i)
0:t, y0:t−1) of p(z̄

(i,j)
t |x

(i)
0:t, y0:t−1) has been

given in Inductive Assumption 3.3.
Then using importance sampling and also noting the
definition of r

(i,j)
t yields, for eachi = 1, ..., Nx, a

weighted empirical approximation ofp(zt|x
(i)
0:t, y0:t) as

pNz
(zt|x

(i)
0:t, y0:t) =

Nz
∑

j=1

q̄
(i,j)
t δ(zt − z̄

(i,j)
t ) (22)

whereq̄
(i,j)
t is evaluated according to

q̄
(i,j)
t ∝ p(yt|x

(i)
t , z̄

(i,j)
t )r

(i,j)
t ;

Nz
∑

j=1

q̄
(i,j)
t = 1 (23)

4) Generation of particles̃x(i)
t+1, i = 1, ..., Nx

Assume that the particles̃x(i)
t+1, i = 1, ..., Nx, are gener-

ated according to the proposal functionπ(xt+1|x
(i)
0:t, y0:t).

5) Measurement update ofzt based onxt+1

By using importance sampling, this step aims to derive
a weighted empirical approximation ofp(zt|x̃

(i)
0:t+1, y0:t).

Simple calculation shows that

p(zt|x̃
(i)
0:t+1, y0:t) ∝ p(zt|x

(i)
0:t, y0:t−1)p(yt|x

(i)
t , zt)

× p(x̃
(i)
t+1|x

(i)
t , zt)

(24)

Analogously to step 3), chooseπ(zt|x
(i)
0:t, y0:t−1) as the

importance function and note thatp̃Nz
(z̄

(i,j)
t |x

(i)
0:t, y0:t−1)

is an approximation ofp(z̄
(i,j)
t |x

(i)
0:t, y0:t−1). Using im-

portance sampling and also noting the definition ofr
(i,j)
t

yields, for eachi = 1, ..., Nx, a weighted empirical
approximation ofp(zt|x̃

(i)
0:t+1, y0:t) as

pNz
(zt|x̃

(i)
0:t+1, y0:t) =

Nz
∑

j=1

q
(i,j)
t δ(zt − z̄

(i,j)
t ) (25)

where x̃
(i)
0:t+1 , (x

(i)
0:t, x̃

(i)
t+1) and q

(i,j)
t is evaluated

according to

q
(i,j)
t ∝ p(yt|x

(i)
t , z̄

(i,j)
t )p(x̃

(i)
t+1|x

(i)
t , z̄

(i,j)
t )r

(i,j)
t ;

Nz
∑

j=1

q
(i,j)
t = 1

(26)

6) Resampling of the particles̄z(i,j)
t , i = 1, ..., Nx, j =

1, ..., Nz

By using resampling, this step aims to derive an un-
weighted empirical approximation ofp(zt|x̃

(i)
0:t+1, y0:t).

For eachi = 1, ..., Nx, resampleNz times from the
discrete distribution over{z̄(i,j)

t , j = 1, ..., Nz} with
probability massq(i,j)

t associated with the elementz̄
(i,j)
t

to generate samples{z(i,j)
t , j = 1, ..., Nz}, so that for

any m,

P{z(i,m)
t = z̄

(i,j)
t } = q

(i,j)
t

(27)

As a result, it follows from (25) that for eachi =
1, ..., Nx, an unweighted empirical approximation of
p(zt|x̃

(i)
0:t+1, y0:t) is as follows

p̃Nz
(zt|x̃

(i)
0:t+1, y0:t) =

1

Nz

Nz
∑

j=1

δ(zt − z
(i,j)
t ) (28)

7) Generation of particles̃z(i,j)
t+1 , i = 1, ..., Nx, j = 1, ..., Nz

Assume that for each̃x(i)
t+1, i = 1, ..., Nx, the particles

z̃
(i,j)
t+1 , j = 1, ..., Nz, are generated according to the

proposal functionπ(zt+1|x̃
(i)
0:t+1, y0:t).

By using importance sampling, we try to derive a
weighted empirical approximation ofp(zt+1|x̃

(i)
0:t+1, y0:t).

First, chooseπ(zt+1|x̃
(i)
0:t+1, y0:t) as the importance func-

tion. Then from (28) and

p(zt+1|x0:t+1, y0:t)

=

∫

p(zt|x0:t+1, y0:t)p(zt+1|xt:t+1, zt)dzt

(29)

an approximation ofp(zt+1|x̃
(i)
0:t+1, y0:t), i = 1, ..., Nx,

can be obtained as

p̃Nz
(zt+1|x̃

(i)
0:t+1, y0:t)

=
1

Nz

Nz
∑

l=1

p(zt+1|x̃
(i)
t:t+1, z

(i,l)
t )

(30)
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Now using importance sampling yields that fori =
1, ..., Nx, a weighted empirical approximation of
p(zt+1|x̃

(i)
0:t+1, y0:t) as follows

pNz
(zt+1|x̃

(i)
0:t+1, y0:t)

=

Nz
∑

j=1

r̃
(i,j)
t+1 δ(zt+1 − z̃

(i,j)
t+1 )/

Nz
∑

l=1

r̃
(i,l)
t+1

(31)

wherer̃
(i,j)
t+1 is evaluated according to

r̃
(i,j)
t+1 = p̃Nz

(z̃
(i,j)
t+1 |x̃

(i)
0:t+1, y0:t)/π(z̃

(i,j)
t+1 |x̃

(i)
0:t+1, y0:t) (32)

Finally, from (31) and

p(yt+1|x0:t+1, y0:t)

=

∫

p(zt+1|x0:t+1, y0:t)p(yt+1|xt+1, zt+1)dzt+1

(33)

an approximation pNz
(yt+1|x̃

(i)
0:t+1, y0:t) of

p(yt+1|x̃
(i)
0:t+1, y0:t) can be obtained as (11) witht replaced

by t + 1. In turn, it can be seen from (20), (22), step 4), step
7), and (32) that Inductive Assumptions 3.1 to 3.3 hold with
t replaced byt + 1. Hence, we have completed the derivation
of the DPF by the induction principle.

B. Summary of the filtering algorithm

Initialization
Initialize the particles̃x(i)

0 ∼ p(x0), i = 1, ..., Nx, and for
eachx̃

(i)
0 , the particles̃z(i,j)

0 ∼ p(z0|x̃
(i)
0 ), j = 1, ..., Nz. With

a slight abuse of notation letp(x0) = pNz
(x0|x0:−1, y0:−1) =

π(x0|x0:−1, y0:−1) and p(z0|x0) = p̃Nz
(z0|x0, y0:−1) =

π(z0|x0, y0:−1).
At each time instant(t ≥ 0)

1) Measurement update ofx0:t based onyt

The importance weightsw(i)
t , i = 1, ..., Nx, are evaluated

according to (18).
2) Resampling of{x̃(i)

0:t, z̃
(i,1)
t , r̃

(i,1)
t ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i =

1, ..., Nx

According to (19), resample
{x̃

(i)
0:t, z̃

(i,1)
t , r̃

(i,1)
t ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i = 1, ..., Nx, to

generate samples{x(i)
0:t, z̄

(i,1)
t , r

(i,1)
t ..., z̄

(i,Nz)
t , r

(i,Nz)
t },

i = 1, ..., Nx, where fort ≥ 0, r̃
(i,j)
t is defined according

to (32).
3) Measurement update ofzt based onyt

For i = 1, ..., Nx, the importance weights̄q(i,j)
t , j =

1, ..., Nz, are evaluated according to (23).
4) Generation of particles̃x(i)

t+1, i = 1, ..., Nx

For eachi = 1, ..., Nx, x̃
(i)
t+1 is generated according to

the proposal functionπ(xt+1|x
(i)
0:t, y0:t).

5) Measurement update ofzt based onxt+1

For i = 1, ..., Nx, the importance weightsq(i,j)
t , j =

1, ..., Nz, are evaluated according to (26).
6) Resampling of the particles̄z(i,j)

t , i = 1, ..., Nx, j =
1, ..., Nz

According to (27), for eachi = 1, ..., Nx, resample
the particlesz̄(i,j)

t , j = 1, ..., Nz, to generate samples
z
(i,j)
t , j = 1, ..., Nz.

7) Generation of particles̃z(i,j)
t+1 , i = 1, ..., Nx, j = 1, ..., Nz

For each i = 1, ..., Nx, the particles z̃
(i,j)
t+1 , j =

1, ..., Nz, are generated according to the proposal function
π(zt+1|x̃

(i)
0:t+1, y0:t) wherex̃

(i)
0:t+1 , (x

(i)
0:t, x̃

(i)
t+1).

C. Implementation issues

1) Two resampling steps:Unlike most of PFs in the lit-
erature, the DPF has two resampling steps, i.e., step 2) and
step 6). Furthermore, the second resampling bears a parallel
structure. This is because the particlesz̄

(i,j)
t , i = 1, ..., Nx,

j = 1, ..., Nz, can be divided intoNx independentgroups in
terms of the indexi. Therefore, the second resampling can be
implemented in parallel.

In the implementation of the first resampling, it
would be helpful to note the following points. For
i = 1, ..., Nx, {r̃

(i,1)
t , ..., r̃

(i,Nz)
t } is associated with

{x̃
(i)
0:t, z̃

(i,1)
t , ..., z̃

(i,Nz)
t }, according to the definitioñr(i,j)

t =

p̃Nz
(z̃

(i,j)
t |x̃

(i)
0:t, y0:t−1)/π(z̃

(i,j)
t |x̃

(i)
0:t, y0:t−1). Therefore, af-

ter resampling of{x̃(i)
0:t, z̃

(i,1)
t , ..., z̃

(i,Nz)
t }, i = 1, ..., Nx,

{r̃
(i,1)
t , ..., r̃

(i,Nz)
t }, i = 1, ..., Nx, should accordingly be

resampled to obtain{r(i,1)
t , ..., r

(i,Nz)
t }, i = 1, ..., Nx.

According to the definition of r̃(i,j)
t , r

(i,j)
t can be de-

fined asr(i,j)
t = p̃Nz

(z̄
(i,j)
t |x

(i)
0:t, y0:t−1)/π(z̄

(i,j)
t |x

(i)
0:t, y0:t−1).

As a result, {x̃(i)
0:t, z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i =

1, ..., Nx, is resampled in step 2). Moreover, since the
particles x

(i)
0:t−1, i = 1, ..., Nx, will not be used in

the future, it is actually only necessary to resample
{x̃

(i)
t , z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r

(i,Nz)
t }, i = 1, ..., Nx, to gen-

erate{x(i)
t , z̄

(i,1)
t , r

(i,1)
t , ..., z̄

(i,Nz)
t , r

(i,Nz)
t }, i = 1, ..., Nx.

2) Construction of the proposal functions:Like [15] where
the “prior” is chosen as the proposal function, we try to
choosep(xt+1|x

(i)
0:t, y0:t) and p(zt+1|x̃

(i)
0:t+1, y0:t) as the pro-

posal functionsπ(xt+1|x
(i)
0:t, y0:t) and π(zt+1|x̃

(i)
0:t+1, y0:t),

respectively. Unlike [15], however,p(xt+1|x
(i)
0:t, y0:t) and

p(zt+1|x̃
(i)
0:t+1, y0:t) are usually unknown. Therefore, we

need to construct approximations top(xt+1|x
(i)
0:t, y0:t) and

p(zt+1|x̃
(i)
0:t+1, y0:t) such that the particles̃x(i)

t+1 and z̃
(i,j)
t+1 ,

j = 1, ..., Nz, can be sampled from the approximations,
respectively.

A convenient way to construct those approximations is given
as follows. From (22), an approximation ofp(xt+1|x

(i)
0:t, y0:t)

can be obtained as

pNz
(xt+1|x

(i)
0:t, y0:t) =

Nz
∑

j=1

q̄
(i,j)
t p(xt+1|x

(i)
t , z̄

(i,j)
t ) (34)

In turn, a further approximation ofp(xt+1|x
(i)
0:t, y0:t) can be

obtained asN (x̄
(i)
t+1, Σ

(i)
t+1) with x̄

(i)
t+1 andΣ

(i)
t+1, respectively,

the mean and the covariance of the discrete distribution over
{x̃

(i,j)
t+1 , j = 1, ..., Nz} with probability mass̄q(i,j)

t associated

with the element̃x(i,j)
t+1 ∼ p(xt+1|x

(i)
t , z̄

(i,j)
t ). Therefore, for

i = 1, ..., Nx, the particlex̃(i)
t+1 can be generated from

π(xt+1|x
(i)
0:t, y0:t) = N (x̄

(i)
t+1, Σ

(i)
t+1) (35)

On the other hand, from (28) and (29), an approximation
p̃Nz

(zt+1|x̃
(i)
0:t+1, y0:t) of p(zt+1|x̃

(i)
0:t+1, y0:t) has already been
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given in (30). Then, it follows from (30) and the assumption
that p(zt+1|xt:t+1, zt) is known that, for eachi = 1, ..., Nx,
the particlez̃

(i,j)
t+1 , j = 1, ..., Nz can be generated from

π(zt+1|x̃
(i)
0:t+1, y0:t) = p̃Nz

(zt+1|x̃
(i)
0:t+1, y0:t) (36)

Remark 3.2:From (25) and (29), another approximation of
p(zt+1|x̃

(i)
0:t+1, y0:t) can be obtained as

pNz
(zt+1|x̃

(i)
0:t+1, y0:t)

=

Nz
∑

j=1

q
(i,j)
t p(zt+1|x̃

(i)
0:t+1, z̄

(i,j)
t , y0:t)

(37)

This observation shows that the PF used to estimate
p(zt|x

(i)
0:t, y0:t) is closely related to the so-called marginal

PF [21]. A marginal PF would sample the particlesz̃
(i,j)
t+1 ,

j = 1, ..., Nz, from

π(zt+1|x̃
(i)
0:t+1, y0:t)

=

Nz
∑

j=1

q
(i,j)
t π(zt+1|x̃

(i)
0:t+1, z̄

(i,j)
t , y0:t)

(38)

According to [21], sampling from (38) is precisely equiv-
alent to first resample the particles̄z(i,j)

t , i = 1, ..., Nx,
j = 1, ..., Nz according to (27) and then sample the par-
ticle z̃

(i,j)
t+1 from π(zt+1|x̃

(i)
0:t+1, z

(i,j)
t , y0:t). If (37) is cho-

sen as the proposal function, i.e.,π(zt+1|x̃
(i)
0:t+1, y0:t) =

pNz
(zt+1|x̃

(i)
0:t+1, y0:t) in the marginal PF, then sampling from

(38) would be exactly the same as what we did. In addition,
like the marginal PF, for eachi = 1, ..., Nx, the computational
cost of r̃(i,j)

t , j = 1, ..., Nz, is O(N2
z ). However, this should

not be a problem as a smallNz of particles are usually used
to approximatep(zt|x

(i)
0:t, y0:t). Moreover, a couple of methods

have been given in [21] to reduce this computational cost. On
the other hand, if (36) is chosen as the proposal function,
then r̃

(i,j)
t = 1, i = 1, ..., Nx, j = 1, ..., Nz. As a result, the

resampling of{r̃(i,1)
t , ..., r̃

(i,Nz)
t }, i = 1, ..., Nx, is not needed

and the computation of (11), (23) and (26) is simplified.♦
Remark 3.3:If system (3) has a special structure, then the

construction ofπ(xt+1|x
(i)
0:t, y0:t) can become simpler. We

mention two cases here. First, assume that thex-dynamics
of system (3) is independent ofz, then p(xt+1|x

(i)
0:t, y0:t) =

p(xt+1|x
(i)
t ) and thus we can chooseπ(xt+1|x

(i)
0:t, y0:t) =

p(xt+1|x
(i)
t ). Systems with this special structure have been

studied in the literature before, see e.g., [11]. Second, assume
that system (3) takes the following form

xt+1 = fx
t (xt, zt) + gx

t (xt)v
x
t

zt+1 = fz
t (xt, zt) + gz

t (xt, zt)v
z
t

yt = ht(xt, zt, et)

(39)

wherefx
t (·), fz

t (·), gx
t (·), gz

t (·) andht(·) are known functions,
vt is assumed white and Gaussian distributed according to

vt =

[

vx
t

vz
t

]

∼ N

(

0,

[

Qx
t (Qzx

t )T

Qzx
t Qz

t

])

(40)

Then from (34), a further simplified approximation of
p(xt+1|x

(i)
0:t, y0:t) can be obtained asN (x̄

(i)
t+1, Σ

(i)
t+1 +

gx
t (x

(i)
t )Qx

t (gx
t (x

(i)
t ))T ) with x̄

(i)
t+1 and Σ

(i)
t+1, respectively,

the mean and the covariance of the discrete distribution
{x̃

(i,j)
t+1 , j = 1, ..., Nz} with probability massq̄

(i,j)
t asso-

ciated with the element̃x(i,j)
t+1 ∼ p(xt+1|x

(i)
t , z̄

(i,j)
t ). For

this special case,π(xt+1|x
(i)
0:t, y0:t) = N (x̄

(i)
t+1, Σ

(i)
t+1 +

gx
t (x

(i)
t )Qx

t (gx
t (x

(i)
t ))T ). ♦

While we have assumed the proposal functions in the form
of π(xt|x

(i)
0:t−1, y0:t−1) and π(zt|x̃

(i)
0:t, y0:t−1), it is possible

to choose proposal functions in more general forms. For
example, in the importance sampling of (24), the proposal
functionπ(zt|x

(i)
0:t, y0:t−1) can be replaced by another proposal

function in the form ofπ(zt|x̃
(i)
0:t+1, y0:t−1). Moreover, this

new proposal function, together with the two proposal func-
tionsπ(xt|x

(i)
0:t−1, y0:t−1) andπ(zt|x̃

(i)
0:t, y0:t−1) can be further

made dependent onyt. That is, in the importance sampling
of (14), (21) and (24), the proposal functions in the form
of π(xt|x

(i)
0:t−1, y0:t), π(zt|x

(i)
0:t, y0:t) andπ(zt|x̃

(i)
0:t+1, y0:t) can

be used, respectively. Due to the space limitation, we do not
discuss this issue here and we refer the interested reader to,
for example, [2, 7, 13, 23] for relevant discussions. Finally, we
remaind that if these proposal functions in more general forms
are used, then slight modification is needed to make to the DPF
algorithm.

3) Computing the state estimate:A common application of
a PF is to compute the state estimate, i.e., the expected mean
of the state. For system (3), the state estimate ofxt andzt are
defined as

x̄t = Ep(xt|y0:t)(xt), z̄t = Ep(zt|y0:t)(zt) (41)

Then the approximation of̄xt and z̄t can be computed in the
following way for the DPF. Note from (17) thatp(xt|y0:t) has
an empirical approximationpNx

(xt|y0:t) =
∑Nx

i=1 w
(i)
t δ(xt −

x̃
(i)
t ). Then, an approximation̂xt of x̄t can be calculated in

the following way

x̂t = EpNx (xt|y0:t)(xt) =

Nx
∑

i=1

w
(i)
t x̃

(i)
t (42)

Analogously, note from (20) and (22) thatp(zt|y0:t)
has an empirical approximationpNx,Nz

(zt|y0:t) =
1

Nx

∑Nx

i=1

∑Nz

j=1 q̄
(i,j)
t δ(zt − z̄

(i,j)
t ). Then, an approximation

ẑt of z̄t can be calculated as

ẑt = EpNx,Nz (zt|y0:t)(zt) =
1

Nx

Nx
∑

i=1

Nz
∑

j=1

q̄
(i,j)
t z̄

(i,j)
t (43)

IV. D ISCUSSION

In the DPF algorithm, the summation calculation in
the normalizing factor (the denominator) ofw(i)

t in
(18) and the first resampling, i.e., the resampling of
{x̃

(i)
t , z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i = 1, ..., Nx, are the

only operations that cannot be implemented in parallel. Be-
sides, the remaining operations including the second resam-
pling, i.e., the resampling of the particlesz̄

(i,j)
t , i = 1, ..., Nx,

j = 1, ..., Nz, can be divided intoNx independentparts in
terms of the indexi and can thus be implemented in parallel.
In this sense, we say that the DPF has the advantage over the
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Fig. 3. The architecture of the PF with parallel structure. It consists of a
central unit (CU) and a number of processing elements (PE) where the CU
handles the operations that cannot be implemented in parallel and the PEs are
run in parallel to deal with the operations that can be implemented in parallel.

regular PF in that the DPF can increase the level of parallelism
of the PF.

The underlying idea of the DPF is different from that of
the distributed PFs, such as the DRPA-PF and the DRNA-
PF (see Section I), while they all have parallel structure. This
difference results in a couple of unique features of the DPF in
contrast with the distributed PFs, which identify the potential
of the DPF in the application of PFs in real-time systems
and the parallel implementation of PFs. In the remaining part
of this section, we first briefly review the DRPA-PF and the
DRNA-PF, and then we point out the unique features of the
DPF. Finally, we show that there exist two ways to further
increase the level of parallelism of the DPF.

Before the discussion, it should be noted that all the DPF,
the DRPA-PF and the DRNA-PF have the architecture as
shown in Fig. 3.

A. Review of the DRPA-PF and the DRNA-PF [5]

Assume that the sample space containsM particles, where
M is assumed to be the number of particles that is needed
for the sampling importance resampling PF (SIR-PF) [13] or
the bootstrap PF [15] to achieve a satisfactory performance
for the filtering problem of system (1). Then the sample space
is divided intoK disjoint strata whereK is an integer and
satisfies1 ≤ K ≤ M . Further assume that each stratum
corresponds to a PE. Before resampling each PE thus hasN
particles whereN = M/K is an integer.

The sequence of operations performed by thekth PE and the
CU for the DRPA-PF is shown in Fig. 4. The inter-resampling
is performed on the CU and its function is to calculate
the number of particlesN (k) that will be produced after
resampling for thekth PE. E(N (k)) should be proportional
to the weightW (k) of thekth PE which is defined as the sum
of the weights of the particles inside thekth PE. In particular,
N (k) is calculated using the residual systematic resampling
(RSR) algorithm proposed in [4]. OnceN (k), k = 1, ..., K,
are known, resampling is performed inside theK PEs inde-
pendently which is referred to as the intra-resampling. Note
that after resampling, fork = 1, ..., K, the kth PE hasN (k)

particles andN (k) is a random number because it depends on
the overall distribution of the weightsW (k), k = 1, ..., K. On
the other hand, note that each PE is supposed to be responsible
for processingN particles and to perform the same operations
in time. Therefore after resampling, the exchange of particles

MU

Inter

R

Intra

R

PR

PR

TU

PEk CU

MUy
x

TUz

Rz

MUx
z

TUx

MUy
z

PR

Rx

PR

PEi CU

DRPA-PF DPF

W (k)

N (k)

N (k)
−N ξt-particles

wi

See Remark 4.1

Fig. 4. Sequence of operations performed by the specified PE and the CU
for the DRPA-PF and the DPF. The data transmitted between thespecified
PE and the CU and between different PEs are marked. For the DRPA-
PF, the abbreviations are MU (measurement update ofξ0:t based onyt),
Inter R (inter resampling), Intra R (intra resampling), PR (particle routing),
and TU (generation of particlesξ(l)

t+1, l = 1, ...,M ). For the DPF, the
abbreviations are MUyx (measurement update ofx0:t based onyt), Rx

(resampling of{x̃(i)
t , z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i = 1, ...,Nx),

PR (particle routing), MUyz (measurement update ofzt based onyt), TUx

(generation of particles̃x(i)
t+1, i = 1, ...,Nx), MUx

z (measurement update of

zt based onxt+1), Rz (resampling ofz̄(i,j)
t , i = 1, ...,Nx, j = 1, ...,Nz)

and TUz (generation of particles̃z(i,j)
t+1 , i = 1, ...,Nx, j = 1, ...,Nz).

among the PEs has to be performed such that each PE has
N particles. This procedure is referred as particle routing
and is conducted by the CU. According to [5], the DRPA-
PF requires a complicated scheme for particle routing due
to the proportional allocation rule. In order to shorten the
delay caused by the complicated particle routing scheme in
the DRPA-PF, the DRNA is in turn proposed in [5].

B. Unique features of the DPF

The parallel structure of the DPF is created by decomposing
the state space, differing from the parallel structure of the
distributed PFs which is created by dividing the sample space.
In the following, we will show that this difference results in
a couple of unique features of the DPF.

Before the discussion, the sequence of operations performed
by theith PE and the CU for the DPF is shown in Fig. 4. The
summation calculation in the normalizing factor ofw

(i)
t in (18)

and the resampling of{x̃(i)
t , z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t },
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i = 1, ..., Nx, are performed on the CU. Assume that there are
Nx PEs, and for eachi = 1, ..., Nx, the ith PE handles the
ith independent part of the remaining operations of the DPF.
In particular, for eachi = 1, ..., Nx, the ith PE handles the
resampling of the particles̄z(i,j)

t , j = 1, ..., Nz. Therefore, the
resampling of the particles̄z(i,j)

t , i = 1, ..., Nx, j = 1, ..., Nz,
is run in parallel on the PEs.

Remark 4.1:In the particle routing of the DPF, the data
transmitted between different PEs depends on the resampling
result of {x̃(i)

t , z̃
(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i = 1, ..., Nx.

More specifically, there will be no data transmitted through
the ith PE if {x̃(i)

t , z̃
(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t } is selected

only once in the resampling. Otherwise, the data transmitted
through theith PE will be{x̃(m)

t , z̃
(m,1)
t , r̃

(m,1)
t , ..., z̃

(m,Nz)
t ,

r̃
(m,Nz)
t } for some m = 1, ..., Nx. In particular, if
{x̃

(i)
t , z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t } is selected more than

once, thenm = i; if {x̃
(i)
t , z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }

is not selected, thenm = 1, ..., Nx and m 6= i.
Therefore, the data transmitted between any two PEs, say,
the i1th PE and the i2th PE, will be either zero or
{x̃

(m)
t , z̃

(m,1)
t , r̃

(m,1)
t , ..., z̃

(m,Nz)
t , r̃

(m,Nz)
t } for either m = i1

or m = i2. ♦

In contrast to the DRPA-PF, the DPF allows a simpler parti-
cle routing scheme. For the DRPA-PF, since after resampling
the kth PE hasN (k) particles that is a random number, a
complicate scheme has to be used for the DRPA-PF to make
all K PEs has equallyN particles. For the DPF, however, since
after the resampling of{x̃(i)

t , z̃
(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t },

i = 1, ..., Nx, all Nx PEs still have the same number of
particles, then the DPF allows a simpler particle routing
scheme and actually each PE can be treated as a single particle
in the particle routing.

Given a PF with parallel structure, it works most efficiently
if each PE handles the same number of particles. The effi-
ciency of the DRPA-PF usually decreases, since the numbers
of particles produced by each PE are not evenly but randomly
distributed among the PEs. To be specific, note that the time
used by thekth PE to produceN (k) particles,k = 1, ..., K,
after resampling are usually not the same. This observation
implies that the time used by the DRPA to produce the
particles after resampling is determined by thek∗th PE that
produces the largestN (k∗). Clearly, the more unevenly the
numbers of particles produced by each PE are distributed,
the more time the DRPA takes to produce the particles after
resampling. Especially, in the extreme case thatN (k∗) ≫ N (k)

with k = 1, ..., K, andk 6= k∗, the efficiency of the DRPA-
PF will be decreased significantly. However, for the DPF,
the ith PE that handles the resampling of particlesz̄

(i,j)
t ,

j = 1, ..., Nz, produces, after resampling, the same number
of particlesz

(i,j)
t , j = 1, ..., Nz. Therefore, the DPF does not

have the efficiency decrease problem of the DRPA-PF.
Besides, it will be verified by two numerical examples in the

subsequent section that, the DPF has the potential to achieve
in a shorter execution time the same level of performance as
the bootstrap PF. However, the DRNA-PF actually trades PF
performance for speed improvement [5, 22].

Remark 4.2:The ideal minimum execution timeTex of

the DRPA-PF and the DRNA-PF have been given in [5, 22].
Analogously, we can also give the ideal minimum execution
time of the DPF. Like [5, 22], the following assumptions are
made. Consider an implementation with a pipelined processor.
Assume that the execution time of the particle generation
and the importance weights calculation of every particle is
LTclk whereL is the latency due to the pipelining andTclk

is the clock period. Also assume that the resampling takes
the same amount of time as the particle generation and the
importance weights calculation. As a result, we have the ideal
minimum execution time of the DPF asT DPF

ex = (2Nz +
L + Nx + Mr + 1)Tclk. Here,2Nz represents the delay due
to the resampling of the particles̄z(i,j)

t , j = 1, ..., Nz, and
the corresponding particle generation and importance weights
calculation,Nx represents the delay due to the resampling of
{x̃

(i)
t , z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i = 1, ..., Nx, Mr is the

delay due to the particle routing and the extra oneTclk is due
to the particle generation and importance weight calculation
of the particlex

(i)
t . ♦

C. Two ways to further increase the level of parallelism of the
DPF

The first resampling of the DPF, i.e., resampling of
{x̃

(i)
t , z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i = 1, ..., Nx, is the

major operation that cannot be implemented in parallel. If
Nx is large, then this resampling will cause a large delay.
In order to further increase the level of parallelism of the DPF
and shorten the execution time, it is valuable to find ways to
handle this problem.

Two possible ways will be given here. The first one is
straightforward and is to employ any of the distributed re-
sampling algorithms proposed in [5, 22] to perform the first
resampling of the DPF and besides, the remaining parts of the
DPF stay unchanged. Nonetheless, we prefer the DRPA to the
other distributed resampling algorithms, since it can produce
the same result as the systematic resampling [20] according
to [4].

Compared to the first way, the second way only applies to
high dimensional system (1) and it is based on an extension
of the DPF. We have assumed above that the stateξt is
decomposed into two parts according to (2). Actually, the
DPF can be extended to handle the case where the stateξt

is decomposed into more than two (at mostnξ) parts. For
illustration, we briefly consider the case where the stateξt is
decomposed into three parts. The more general case can be
studied using the induction principle.

For convenience, assume that the statext in (2) can be
further decomposed into two parts, i.e.,

xt =

[

x1,t

x2,t

]

(44)

and accordingly, system (3) can be further decomposed into
the following form

x1,t+1 = fx1
t (x1,t, x2,t, zt, v

x1
t )

x2,t+1 = fx2
t (x1,t, x2,t, zt, v

x2
t )

zt+1 = fz
t (x1,t, x2,t, zt, v

z
t )

yt = ht(x1,t, x2,t, zt, et)

(45)
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where x1,t ∈ R
nx1 , x2,t ∈ R

nx2 , vx
t = [(vx1

t )T (vx2
t )T ]T

with vx1
t ∈ R

nvx1 , vx2
t ∈ R

nvx2 . Assume that the proba-
bility densities p(x1,0|y−1) = p(x1,0), p(x2,0|x1,0, y−1) =
p(x2,0|x1,0), p(z0|x1,0, x2,0, y−1) = p(z0|x1,0, x2,0) and for
t ≥ 0, p(x1,t+1|x1,t, x2,t, zt), p(x2,t+1|x1,t:t+1, x2,t, zt),
p(zt|x1,t:t+1, x2,t:t+1, zt) andp(yt|x1,t, x2,t, zt) are known.

The filtering problem of system (45) can be split into three
nested sub-problems according to the following factorization

p(zt, x1,0:t, x2,0:t|y0:t) = p(zt|x1,0:t, x2,0:t, y0:t)

× p(x2,0:t|x1,0:t, y0:t)p(x1,0:t|y0:t)
(46)

where for i = 1, 2, xi,0:t , {xi,0, ..., xi,t}. It can be shown
that the DPF can be extended to handle the filtering problem
of system (45) by using PFs to solve the three nested sub-
problems. Roughly speaking, a PF withNx1 particles (x(i)

1,0:t,
i = 1, ..., Nx1) will be used to estimatep(x1,0:t|y0:t), and
for eachi = 1, ..., Nx1 , a PF withNx2 particles (x(i,j)

2,0:t, j =

1, ..., Nx2) will be used to estimatep(x2,0:t|x
(i)
1,0:t, y0:t), and

for each i = 1, ..., Nx1 and j = 1, ..., Nx2 , a PF with Nz

particles will be used to estimatep(zt|x
(i)
1,0:t, x

(i,j)
2,0:t, y0:t).

Similar to the DPF based on (4), the major operation that
cannot be implemented in parallel in the DPF based on (46)
is its first resampling, i.e., the resampling ofNx1 composite
particles. If a satisfactory performance of the DPF based on
(46) can be achieved withNx1 +Nx2 ≪ Nx, then the number
of composite particles involved in the first resampling of the
DPF will be reduced fromNx to Nx1 . Therefore, in this way
the level of parallelism of the DPF is further increased. If
the DPF is implemented in parallel, then the execution time
of the DPF will be further decreased as well. However, it
should be noted thatNx1 ·Nx2 PEs are required to fully exploit
the parallelism of the DPF based on (46). Due to the space
limitation, we cannot include the extension of the DPF in this
paper and instead we refer the reader to [10] for the details.

V. NUMERICAL EXAMPLES

In this section we will test how the DPF performs on two
examples. The simulations are performed using Matlab under
the Linux operating system. The platform is a server consisting
of eight Intel(R) Quad Xeon(R) CPUs (2.53GHz).

A. Algorithms tested

For the two examples, the bootstrap PF is implemented
in the standard fashion, using different number of particles
(M ). The DPF is implemented according to Section III-B
for different combinations of “x and z particles” (Nx and
Nz). The DRPA-PF according to [5] is tested as well, using
different number of PEs (K). The formulas of [5] has been
closely followed, but the implementation is our own, and it is
of course possible that it can be further trimmed. In addition,
as suggested in [17, 20] systematic resampling is chosen as
the resampling algorithm for all algorithms tested.

B. Performance evaluation: Accuracy

In the tests, the performance of all algorithms are evaluated
by 20000 Monte Carlo simulations. Basically, the accuracy

of the state estimate is measured by the Root Mean Square
Error (RMSE) between the true state and the state estimate.
For example, the RMSE of̂x is defined as

RMSE of x̂ =

√

√

√

√

1

250

250
∑

t=1

1

20000

20000
∑

i=1

||xi
t − x̂i

t||
2 (47)

where with a slight abuse of notation,xi
t denotes the true state

at time t for the ith simulation and̂xi
t is the corresponding

state estimate. It is also tested how well the RMSE reflects
the accuracy of the estimated posterior densities (See Remark
5.1 for more details).

C. Performance evaluation: Timing

One objective with the simulations is to assess the potential
efficiency of the parallel implementation of the DPF. For that
purpose, we record the following times

• Tsi: This is the average execution time of the sequential
implementation of a PF.

• Tcp: This is the average time used by the operations that
cannot be implemented in parallel in a PF.

• Tpi: This is the potential execution time of parallel imple-
mentation of a PF. For the bootstrap PF with centralized
resampling and the DPF, it is calculated according to
Tpi = Tcp + (Tsi − Tcp)/NPE whereNPE is the number
of processing elements. For the DPF, letNPE = Nx. For
the bootstrap PF with centralized resampling, letNPE be
the maximalNx in the simulation of the corresponding
example. Here, the bootstrap PF with centralized resam-
pling means that besides the resampling, the remaining
particle generation and importance weights calculation
of the bootstrap PF are implemented in parallel. For the
DRPA-PF,Tpi is calculated according toTpi = Tcp+Tmir+
(Tsi − Tcp − Tmir)/NPE whereNPE = K and Tmir is the
average maximal intra-resampling time for the DRPA-PF.

D. Performance evaluation: Divergence failures

The raterd is used to reveal how often a PF diverges in
the 20000 Monte Carlo simulations. The bootstrap PF and the
DRPA-PF are said to diverge if their importance weights are
all equal to zero in the simulation. The DPF is said to diverge
if w

(i)
t , i = 1, ..., Nx, are all equal to zero in the simulation.

Once the divergence of a PF is detected, the PF will be rerun.

E. Sketch of the simulation

For the two examples, the bootstrap PF usingM particles
is first implemented and its accuracy measured by the RMSE
will be treated as the reference level. Then it is shown that the
DPF using suitableNx andNz “x andz particles” can achieve
the same level of accuracy. In turn, the DRPA-PF usingM
particles, but with different number of processing elements is
also implemented. Finally, the bootstrap PF using2M particles
is implemented.
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TABLE I
SIMULATION RESULT FOR SYSTEM(48) WITH (49) – “SEE SECTIONSV-B - V-D FOR EXPLANATIONS OF THE NUMBERS”

Case RMSE of[x̂t, ẑt] Tsi (Sec) Tcp (Sec) Tpi (Sec) rd

Bootstrap PF,M = 1000 [2.0173, 2.3322] 0.1891 0.0313 0.0326 0.0155
DPF,Nx = 100, Nz = 19 [2.0104, 2.3497] 0.3545 0.0168 0.0202 0.0133
DPF,Nx = 120, Nz = 19 [1.9914, 2.3045] 0.3901 0.0176 0.0207 0.0175
DPF,Nx = 110, Nz = 24 [1.9907, 2.3154] 0.4127 0.0175 0.0211 0.0113
DPF,Nx = 120, Nz = 24 [1.9906, 2.3259] 0.4338 0.0179 0.0214 0.0076

DRPA-PF,M = 1000, K = 40 [2.0222, 2.3557] 0.6324 0.0671 0.0878 0.0124
DRPA-PF,M = 1000, K = 25 [2.0332, 2.4049] 0.4769 0.0565 0.0799 0.0124

Bootstrap PF,M = 2000 [1.9714, 2.2664] 0.2579 0.0510 0.0528 0.0059

F. Two dimensional example

Consider the following two dimensional nonlinear system

xt+1 = xt +
zt

1 + z2
t

+ vx
t

zt+1 = xt + 0.5zt +
25zt

1 + z2
t

+ 8 cos(1.2t) + vz
t

yt = atan(xt) +
z2

t

20
+ et

(48)

where [x0 z0]
T is assumed Gaussian distributed with

[x0 z0]
T ∼ N (0, I2×2), vt = [vx

t vz
t ]T and et are assumed

white and Gaussian distributed with

vt ∼ N

(

0,

[

1 0.1
0.1 10

])

, andet ∼ N (0, 1) (49)

For the DPF, the proposal functions are chosen according
to Remark 3.3 and (36). The simulation result over[1 250] is
shown in Table I, from which it can be seen that the DPF has
the potential to achieve in a shorter execution time the same
level of accuracy as the bootstrap PF.

Remark 5.1:In Table I, the accuracy of the algorithms is
measured entirely through the RMSE of the state estimate
(47). Since the PF actually computes estimates of the posterior
densityp(zt, x0:t|y0:t) one may discuss if this would be a more
appropriate quantity to evaluate for comparison. Actually, the
state estimateŝxt could be quite accurate even though the
estimate of the posterior density is poor. To evaluate that,
we computed an accurate value of the true posterior density
using the bootstrap PF with “many” (100000) particles, and
compared that with the estimates of the posterior densities
using the bootstrap PF and the DPF with fewer (M = 1000
andNx = 100, Nz = 19) particles. To avoid smoothing issues
for the empirical approximations of the posterior densities,
we made the comparisons for the posterior cumulative distri-
butions (empirical approximations of the posterior cumulative
distributions). The result is shown in Fig. 5. Moreover, let
x̄i

t denote the true mean ofxi
t, then (47) withxi

t replaced
by x̄i

t is also calculated: it is 0.7239 for the bootstrap PF with
M = 1000, and 0.6851 for the DPF withNx=100 andNz=19.
From the above simulation results, we see that the DPF is
at least as good as the bootstrap PF in approximating the
posterior cumulative distribution. We conclude that the RMSE
(47) gives a fair evaluation of the accuracy of the state estimate
produced by the DPF for system (48) with (49). ♦

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (Sec)

 

 

PF, M=1000
DPF, N

x
=100, N

z
=19

Fig. 5. The distance
∑

xt
|F (xt|y0:t) − F̃ (xt|y0:t)| between the “true”

posterior cumulative distributionF (xt|y0:t) and the empirical approximation
of the posterior cumulative distributioñF (xt|y0:t) obtained by using the
bootstrap PF and the DPF (withM = 1000 and Nx = 100, Nz = 19
particles, respectively) as a function of timet (Thin curve: the bootstrap PF,
Thick curve: the DPF). The result is an average over 20000 simulations.

G. Four dimensional example

Consider the following four dimensional nonlinear system

x1,t+1 = 0.5x1,t + 8 sin(t) + vx1
t

x2,t+1 = 0.4x1,t + 0.5x2,t + vx2
t

z1,t+1 = z1,t +
z2,t

1 + z2
2,t

+ vz1
t

z2,t+1 = z1,t + 0.5z2,t

+
25z2,t

1 + z2
2,t

+ 8 cos(1.2t) + vz2
t

yt =
x1,t + x2,t

1 + x2
1,t

+ atan(z1,t) +
z2
2,t

20
+ et

(50)

wherext = [x1,t x2,t]
T and zt = [z1,t z2,t]

T . [xT
0 zT

0 ]T is
assumed Gaussian distributed with[xT

0 zT
0 ]T ∼ N (0, I4×4),

vt = [(vx
t )T (vz

t )T ]T with vx
t = [vx1

t vx2
t ]T and vz

t =
[vz1

t vz2
t ]T , andet are assumed white and Gaussian distributed
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TABLE II
SIMULATION RESULT FOR SYSTEM(50) WITH (51) – “SEE SECTIONSV-B - V-D FOR EXPLANATIONS OF THE NUMBERS”

Case RMSE of[x̂1,t, x̂2,t, ẑ1,t, ẑ2,t] Tsi (Sec) Tcp (Sec) Tpi (Sec) rd

Bootstrap PF,M = 1500 [1.1566, 1.3494, 2.0111, 2.8241] 0.2022 0.0316 0.0339 0.0072
DPF,Nx = 50, Nz = 29 [1.1707, 1.3678, 2.0485, 2.9383] 0.2366 0.0145 0.0190 0.0109
DPF,Nx = 60, Nz = 49 [1.1633, 1.3569, 1.9879, 2.7911] 0.3255 0.0160 0.0212 0.0039
DPF,Nx = 75, Nz = 39 [1.1610, 1.3537,1.9794, 2.7547] 0.3309 0.0164 0.0206 0.0040

DRPA-PF,M = 1500, K = 30 [1.1564, 1.3490, 2.0028, 2.7894] 0.5083 0.0470 0.0669 0.0084
DRPA-PF,M = 1500, K = 50 [1.1566, 1.3495, 2.0148, 2.8302] 0.6951 0.0607 0.0780 0.0107

Bootstrap PF,M = 3000 [1.1518, 1.3419, 1.9794, 2.7601] 0.3105 0.0539 0.0573 0.0021

with

vt ∼ N









0,









1 0 0 0
0 1 0 0
0 0 1 0.1
0 0 0.1 10

















, andet ∼ N (0, 1) (51)

Since the “x-dynamics” does not depend onzt, we let
π(xt+1|x

(i)
0:t, y0:t) = p(xt+1|x

(i)
t ) and choose the other pro-

posal function according to (36). The simulation result over
[1 150] is shown in Table II, from which it can be seen that
the DPF has the potential to achieve in a shorter execution
time the same level of accuracy as the bootstrap PF.

H. Summary

Regarding the accuracy, comparison of the first part of the
RMSE column in Tables I and II shows that with suitably
chosenNx andNz, the DPF achieves the same level of accu-
racy as the bootstrap PF. On the other hand, with comparable
number of particles (it is fair to compareM with Nx(Nz +1))
the accuracy is not much worse for the DPF than for the
bootstrap PF. In fact, in Table II the DPF even performs
slightly better than the PF for some of the states (no statistical
significance), illustrating that allocating points as in Fig. 1.c
could actually be beneficial for some systems.

Regarding timing, comparison of theTsi and Tpi column
in Tables I and II shows that the execution time of the DPF
can be shortened significantly if the DPF can be implemented
in parallel. Moreover, the DPF has a potential to offer better
accuracy in shorter execution time. In particular, theTpi of
the DPF is less than that of the bootstrap PF with central-
ized resampling. It is valuable to note that theTpi of the
DPF is even smaller than theTcp of the bootstrap PF with
centralized resampling, which is actually the lower bound
of the execution time of the bootstrap PF with centralized
resampling. In addition, as discussed in Section IV-C, theTpi

of the DPF can be further shortened by using any one of the
distributed resampling algorithms to perform the resampling
of {x̃(i)

t , z̃
(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i = 1, ..., Nx. As a

result, it is fair to say that the parallel implementation ofthe
DPF has the potential to shorten the execution time of the PF.

VI. CONCLUSIONS

In this paper we have proposed a new way of allocating
the particles in particle filtering. By first decomposing the
state into two parts, the DPF splits the filtering problem into
two nested sub-problems and then handles the two nested

sub-problems using PFs. Returning to the questions in the
intuitive preview in Section II-A, we have seen that the DPF
can produce results of not much worse accuracy compared to
the regular PF, with comparable number of particles. We have
also seen that the structure gives a potential for more efficient
calculations. The advantage of the DPF over the regular PF
lies in that the DPF can increase the level of parallelism
of the PF in the sense that part of the resampling has a
parallel structure. The parallel structure of the DPF is created
by decomposing the state space, differing from the parallel
structure of the distributed PFs which is created by dividing
the sample space. This difference results in a couple of unique
features of the DPF in contrast with the existing distributed
PFs. As a result, we believe that the DPF is a new option for
parallel implementation of PFs and the application of PFs in
real-time systems.

An interesting topic for future work is to study how to
decompose the state given a high dimensional system such that
the execution time of the parallel implementation of the DPF
can be maximally reduced. Another interesting topic is to test
the DPF in different types of parallel hardware, for example,
graphical processing units (GPU) and field-programmable gate
arrays (FPGA).

A further topic of future investigations is to generalize the
line pattern in Fig. 1.c to other lines and curves that may pick
up useful shapes in the posterior densities to be estimated.This
essentially involves a change of state variables before theDPF
is applied.
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