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Abstract—In this paper, a new particle filter (PF) which we In this paper, a new PF, which we refer to as the decen-
refer to as the decentralized PF (DPF) is proposed. By first tralized PF (DPF), will be proposed. By first decomposing the
decomposing the state into two parts, the DPF splits the filting state into two parts, the DPF splits the filtering problem of

problem into two nested sub-problems and then handles the tav .
nested sub-problems using PFs. The DPF has the advantage ove system (1) into two nested sub-problems and then handles

the regular PF that the DPF can increase the level of paraliim the two nested sub-problems using PFs. The DPF has the
of the PF. In particular, part of the resampling in the DPF bears advantage over the regular PF that the DPF can increase the
a parallel structure and can thus be implemented in parallel The  |evel of parallelism of the PF in the sense that besides the
parallel structure of the DPF is created by decomposing thetate 4 ticle generation and the importance weights calcuiatio
space, differing from the parallel structure of the distributed PFs o .
which is created by dividing the sample space. This differece part of the resampllng in the DPF can also b,e implemented
results in a couple of unique features of the DPF in contrast ith  in parallel. As will be seen from the DPF algorithm, there are
the existing distributed PFs. Simulation results of two exanples actually two resampling steps in the DPF. The first resargplin
indicate that the DPF has a potential to achieve in a shorter in the DPF, like the resampling in the regular PF, cannot be
execution time the same level of performance as the regularf? implemented in parallel, but the second resampling bears a
Index Terms—Particle filtering, parallel algorithms, nonlinear  parallel structure and can thus be implemented in parallel.
system, state estimation. Hence, the parallel implementation of the DPF can be used
to shorten the execution time of the PF.
I. INTRODUCTION As pointed out in [5], the application of PFs in real-time
systems is limited due to its computational complexity vahic
is mainly caused by the resampling involved in the PF. The
resampling is essential in the implementation of the PF as
&1 = fe(&,vp) without resampling the variance of the importance weigtikis w
Yo = hu(&s,e0) (1) increase over time [13]. The resampling however introduces
' a practical problem. The resampling limits the opportutdty
wheret is the discrete-time indeX; € R« is the state at time parallelize since all the particles must be combined, alijmo
t,y: € R is the measurement output, € R" ande; € R"  the particle generation and the importance weights caionla
are independent noises whose known distributions are érdepof the PF can still be realized in parallel [13]. Therefote t
dent oft, & andy:, and f;(-) andh(-) are known functions. resampling becomes a bottleneck to shorten the executien ti
The filtering problem consists of recursively estimating@ thof the PF. Recently, some distributed resampling algothm
posterior density(&:[yo.) where,yo.: = {yo, ..., y:}. Analytic ~ for parallel implementation of PFs have been proposed in
solutions to the filtering problem are only available for g5 22]. The idea of the distributed resampling is to divide
relatively small and restricted class of systems, the masle sample space into several strata or groups such that the
important being the Kalman filter [19] which assumes thaésampling can be performed independently for each stratum
system (1) has a linear-Gaussian structure. A class of folvelor group and can thus be implemented in parallel. The effect
numerical algorithms to the filtering problem are partidiefs  of different distributed resampling algorithms on the sade
(PFs), which are sequential Monte Carlo methods based @nthe importance weights has been analyzed in [22]. Based
particle representations of probability densities [2hc¢® the on the introduced distributed resampling algorithms, apteu
seminal work [15], PFs have become an important tool i¥ distributed PFs have been further proposed in [5, 22]h suc
handling the nonlinear non-Gaussian filtering problem, arg the distributed resampling with proportional allocatRF
have found many applications in statistical signal procgss (DRPA-PF) and the distributed resampling with nonpropor-
economics and engineering; see e.g., [2, 12,14, 16] fontec@onal allocation PF (DRNA-PF).
surveys of PFs. The underlying idea of the DPF is different from that of the
. . o existing distributed PFs, while they all have parallel stave.
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In this paper, we study the filtering problem for the follow
ing nonlinear discrete-time system



Il. PROBLEM FORMULATION

A. Intuitive preview

The formulas for particle filtering tend to look complex, and
it may be easy to get lost in indices and update expressions.
Let us therefore provide a simple and intuitive preview tb ge
the main ideas across.

Filtering is about determining the posterior densitieshaf t
states. If the state is two-dimensional with componenésd
z, say, the density is a surface over the- z plane, see Fig.
1. One way to estimate the density is to fiX points in the
plane in a regular grid (Fig. 1.a) and update the values of
the density according to Bayesian formulas. This is known
as the point-mass filter [3,6]. Another way is to throw
points at the plane at random (Fig 1.b), and let them move
to important places in the plane, and update the values of the
SIEE I B R B A A R A R densities at the chosen points, using Bayesian formulas. Th
is a simplified view of what happens in the regular PF. A
third way is illustrated in Fig 1.c: Let the points move to el
Fig. d}- . Pagems fol[_ pgints \?/hefe,dthe %Os_tefiﬁr deDSitiegj aﬂn;- chosen locations, but restrict them to be aligned parailehie
BTl o e egular g1 used I e POrSaTAIEE. b of the axes (the-axis in the plot). The pavallelfines can move
randomly allocated to vertical parallel lines (which thetes are randomly freely, as can the points on the lines, but there is a reistnict
located) used in the DPF. of the pattern as depicted. The algorithm we develop in this
paper (DPF) gives both the movements of the lines and the
positions of the points on the lines, and the density valies a
the chosen points, by application of Bayesian formulas.

compared to the DRPA-PF, the DPF allows a simpler schemelt is well known that the regular PF outperforms the point-

. . . mass filter with the same number of points, since it can
for particle routing and actually treats each processiegeht concentrate them to important areas. One would thus expect
as a particle in _th_e particle routing. Second, the DPF do 7t the DPF would give worse accurlacy than the regular PF
not have the_efﬂmency decrease _problem of the .D.RI.DA'PWith the same number of points, since it is less “flexible” in
Given a PF with parallel structure, it works most efficierifly : . .
each processing element handles the same number of mrtié ¢ allocation qf .pomts. On the other hand, the st_ructu@m

- Aflow more efficient ways of calculating new point locations
However, the efficiency of the DRPA-PF usually decreasegnd weights. That is what we will develop and study in the
since the numbers of particles produced by each process}g{)\ﬁ;owing seétions
element are not evenly but randomly distributed among the ‘
processing elements. Third, it will be verified by two numer-
ical examples that, the DPF has the potential to achieve irBa Problem statement
shorter execution time the same level of performance as the-gnsider system (1). Suppose that the stgtecan be
bootstrap PF. In contrast, the DRNA-PF actually trades fhe 'aecomposed as
performance for the speed improvement [5]. Besides, thal lev
of parallelism of the DPF can be further increased in two ways ¢ = [ Ty ] @)
so that the execution time of the parallel implementation of Zt
the DPF can be further shortened; the first one is to utilizg, accordingly that system (1) can be decomposed as
any of the distributed resampling algorithms proposed in [5
22] to perform the first resampling of the DPF, and the other Tey1 = [ (@, 26, 0F)
is based on an extension of the DPF. As a result, the DPF is ze1 = f7(xe, 20, 07) (3)
a new option for the application of PFs in real-time systems

and the parallel implementation of PFs.

Yt = ht(ztaztaet)

_ _ wherez; € R", z, € R, andv; = [(vF)T (v7)T]T with
The rest of the paper is organized as follows. The problegta € R™* andv; € R™*. In the following, it is assumed for

formglation is_ given .in Section Il. In Sectiqn I, the D_PFconvenience that the probability densitigs:), p(zo|zo) and
algorithm is first derived and then summarized, and finallg: 4 > (2, 1 20, 20), (200 2001, 20) and p(yelze, 22)

some issues regarding the implementation of the DPF al& known.

discussed. In Section IV, some discussions about the DPF angl, this paper, we will study the filtering problem of
its comparison with the existing distributed PFs are made. |Jecursively estimating the posterior densitfz:, zo::|yo: ).
Section V, two numerical examples are elaborated to show tﬂ@cording to the following factorization B
efficacy of the DPF. Finally, we conclude the paper in Section

VI (2, To:t|yo:t) = p(2¢| @0t Your ) P(To:t [Yo:t) (4)



where zg.; £ {x9,...,2;}, the filtering problem (4) can be p(zo.lyo—1) P(2tl0:t: Yoir—1)

split into two nested sub-problems: l /

1) recursively estimating the densityxo.:|yo:t); P(z0:|0:t) <= P(WelTost, You—1) <— p(yelze, z0)

2) recursively estimating the densityz:|xo.¢, Yo:t)- \

That the two sub-problems are nested can be seen from Fig.

. . p<zt‘z0:t’y0:t)

2 where we have sketched the five steps used to derive the
recurrence relation of the conceptual solution to the fiitpr /
problem (4). Since there is in general no analytic solutic P(orilyo:) < P@i+1lon o) < plEeralze, z)
to the filtering problem (4), a numerical algorithm, i.e.eth \
DPF is introduced to provide recursively the empirical appr p(zelzoesss vor)
imations top(xo.¢|yo.t) andp(z¢|zo.t, yo:¢). The DPF actually l
handles the two nested sub-problems using PFs. Roughly
speaklng the DPF solves the first sub-problem using a PF with Pzerlenen, z0) = p(zera|To41s Yoi)

N, particles (co i =1,...,N,) to estimate(zo..|yo.). Then

_ : Fig. 2. Sketch of the steps used to derive the conceptuati@olto the
the DPF handles the Second sub p-rOblem usihgPFs with filtering problem (4). Assume that the probability densitigxo), p(zo|xo)

N, particles each to estima;zq,ztmff)t,yo ¢), %= 1,...,Ny. and fort > 0, p(zes1|ze, 2t), plzesi|Teii, z¢) and plys|ze, z) are
As a result of the nestedness of the two sub- problems k"IOVTn With ?)1 Sllght( at\)US;ﬂ t%fhnot?tlon let(zo|yo:—1) d—d p(:v%) and .
olzo,y0:—1) = p(z0|zo en five steps are needed to derive the
will be seen later that the steps of the PF used to esumaégﬂrence relation of the conceptual solution to the filgerproblem (4).
p(zo: t|y0 ¢) Is nested with that of th&v,, PFs used to estimateThe specific relations between the different densities canobiained by
(zt|170 4> Yo: t) straightforward application of Bayesian formulas and tesomitted. Instead,
?

the notationpi(-) — p2(-) is used to indicate that the calculation of the
Remark 2.1:The idea of decomposing the state into tW@ensityp, () makes use of the knowledge of the dengity(-).

parts and accordingly splitting the filtering problem inteot

nested sub-problems is not new. Actually, it has been used

in the Rao-Blackwellized PF (RBPF); see, e.g, [1, 8,9, 11, 1fhroughout the paper. Suppose we have

25]. However, the RBPF imposes certaiactablesubstructure

assumption on the system considered and hence solves one of v (dE) = Z 5. () 6)
the sub-problem with a number of optimal filters, such as the N &

Kalman filter [19] or the HMM filter [24]. In particular, the ‘

filtering problem (4) has been previously studied in [25] vehe where § <1>( ) is a Dirac measure for a giveﬂ and a
system (3) is assumed to be conditionally (&) linear in measurable setl. Then the expectation of any test function
z; and subject to Gaussian noise. Due to these assumptior(g;) with respect top(§;) can be approximated by

the statez, of system (3) is marginalized out by using the

Kalman filter. However, since there is no tractable subsiinec ~

assumption made on system (3) in this paper, no part of tl'zg(&)p(&)d& N/ (&) P (dte) = N Zg 0

state¢; is analytically tractable as was the case in [1,8,9,11 o
13,25]. 0 Although the distribution Py (d¢;) does not have a well

defined density with respect to the Lebesgue measure, it is
a common convention in the particle filtering community [2,
}5] to use

In the following, letZ ~ p(x) denote thati is a sample
drawn from the densityp(z) of the random variabler,
let M(m,X) denote the (multivariate) Gaussian probabilit
density with mean vectom and covariance matriX, and let
P(A) denote the probability of the evert For convenience, n(&) = N 25 & —€) (8)
foreachi =1,..., N, a; = 5;/ Z;V:l B; is denoted by

where§(-) is a Dirac delta function, as if it is aampirical
approximation of the probability density(¢:) with respect
ai o¢ fi; Zo‘i =1 (®) to the Lebesgue measure. The notations like (8) and the
’ corresponding terms mentioned above are, in the most tigoro
whereN is a natural numbery;, 3;, i = 1, ..., N, are positive Mathematical sense, not correct. However, they enableane t
real numbers, and;  3; denotes thaty; is proportional to avoid the use of measure theory which indeed simplifies the
3. representation a lot especially when a theoretical comrarg
proof is not the concern.

Il1. DECENTRALIZED PARTICLE FILTER A. Derivation of the DPF algorithm

In this section, the DPF algorithm is first derived and then First, we initialize the particle§ ~p(xo), i =1,..., Ny,
summarized. Finally, some issues regarding the implemengmd for eachz|’, the part|C|eSz( w9 p(a |a;(())), j o=
tion of the DPF are discussed. 1,..,N.. Then the derivation of the DPF algorithm will be

We here make a comment regarding some notations useinpleted in two steps by the induction principle. In thetfirs



step, we show that Inductive Assumptions 3.1 to 3.3 to l#e convergence result formalizing the “closeness” of (13)
introduced below hold at= 1. In the second step, assume thab (12), asN, and N, tend to infinity, will be in line with our
Inductive Assumptions 3.1 to 3.3 hold afor ¢ > 1, then we earlier convergence results [18] of the PF for rather aabjtr
show that Inductive Assumptions 3.1 to 3.3 hold recursivelynbounded test functions. %
att+1. Then in the first step we should show that Inductive As-
In the following, we first introduce Inductive Assumptionsumptions 3.1 to 3.3 hold d@t= 1. However, since the first
3.1to 3.3 att. step is exactly the same as the second step, we only consider
Assumption 3.1The DPF producéV, partcheSx0 +_1,© = the second step here due to the space limitation. In the decon

1,..,N, and an unweighted empirical approximation o$tep, assume that Inductive Assumptions 3.1 to 3.3 hold at

p(To:t—1]Yo:e—1) @s
Ny

1 i
= D @01 — xf)y)

N, - 9)
i=1

PN, (Tot—1]Yo:t—1) =
and for each path:Ot 1@ = 1,...,N,, the DPF produce
N, partcheSZt ) ,j = 1,...N,, and a weighted empirical
approximation ofg)(zt,1|x0:171,y0:t,1) as
N,
> e D)

pn. (zea )2l L yow1) = (10)

where qt(wl) is the importance weight and its definition will

be given in the derivation. _
Assumption 3.2The particlesﬁ), 1=1,..,N,, are gen-
erated according to the proposal functm@vt|x0)t 15 Y0:t—1)
and for eacha:§ )i = 1,...,N,, the partcheSZt wd), j =
NZ, are generated accordlng to the proposal function
<zt|xo ) you—1) wherei) 2 (a0, "),
Assumptlon 3.3For eachz =1,..., N, an approximation

DN. (yt|x0t,y0t 1) of p(yt|x0t,y0t 1) can be obtained as

PN, (yt|jozta Yo:t— 1)

72 ) (450, (w))/i (D)

=1

(11)

with 77 = pwv (27 [y, you—1)/m (3L |61, you—1),
where py. (Z; ’7)|x0t,y0t 1) is an approximation of
p(zt”)|x0t,y0t 1) and its definition will be given in the
derivation.

Remark 3.1:In  Inductive Assumptions 3.1 and 3.3,
PN, (To:t—1]yo:—1) andpy, (2 1Iwoi 1) Yo:t— 1)are empirical
approximations op(zo.¢—1|yo:¢—1) andp(z;— 1|$Cot 1 Y0:t—1),
respectively. These approximations should of course be as
close to the true underlying density as possible. This dlesg
is typically assessed via some test functign, (-) used in the
following sense,

I(gi—1) :/gtfl(ztflaIO:tfl)
X p(2t—1, T0o:t—1|Y0:t—1)d2ze—1dTo:—1 (12)

whereg;_; : R" x R™>*" — R is a test function. With the
empirical approximations defined in (9) and (10), an estmat
In, N.(9:—1) Of I(g:—1) is obtained as follows

Zmiqt 1 9t—1 Zt 1)#17811 1)

11]1

In, n.(gt—1) (13)

then we will show in seven steps that Inductive Assumptions
3.1 to 3.3 recursively hold &t+ 1.

1) Measurement update af).; based oy,

By using importance sampling, this step aims to de-
rive a weighted empirical approximation pfxz.+|yo.+)-
Note that an unweighted empirical approximation
PN, (To:t-1[Y0:t—1) Of p(w0.4—1]yo:¢—1) has been given as
(9) in Inductive Assumption 3.1, then simple calculation
shows that the following equation holds approximately

p(zo:e[yo:) o< D, (To:t—1[Yos—1)P(@e|T0:t—1, Yo:e—1)
X p(Ye|To:es Yoit—1) (14)

From Inductive Assumptions 3.1 and 3 (271, i =
1,..,N; can be regarded as samples drawn from
PN, (To.t—1]yoe—1), and fori = 1,..,N,, :Eff) is
the sample drawn fronar(xﬁxéf%fl,y&t,l). Therefore
PN, (xo;t_l|y0:t_1)7r(xt|x8271,yo:t_l) can be treated as
the importance function. On the other hand, from (10)
and

p(il?t |I0:t717 yO:tfl)

(15)
= /p(zt71|170:t715yO:tfl)p(xtWtfl,thl)dzt
an approximation pNz(:EEi)|xéfi_1,y0:t_l) of
(7, )|£C0t 1,Yo:t—1) can be obtained as
pzvz(fcii)lwéii 1> Y0:t—1)
(16)

= quljlp w0\ 20)

Moreover an approximationpy._ (yt|x0t,y0t 1) of
(yt|x0t,y0t 1) has been given as (11) in Inductive

Assumption 3.3.

Now using the importance sampling yields a weighted

empirical approximation op(zo.t|yo.+) as

PN, (To:t|Yo:t) Zwtz)5 (ot — 7o) (17)
wherewti) is evaluated according to
w(i) PN, (yt|$ot7y0t 1)pNz (CCt )|x0t 1, Yo:t-1)
t (7) ;
™ x R
( | Ot 1, Y0:t—1) (18)

No .
ngz) =1
i=1



2)

3)

4)

5)

Resampling of ), z{"") 7" .

1,..,N,
By using resampling, this step aims to derive an un-
weighted empirical approximation @f(z.¢|yo.+)-

ResampleN, times from the discrete distribution over
({7 ~ (1) ~(Z 1) ~(Z 1) +(i,N2) ;(i,Nz)}Z- = 1,.,N,}

Ly.py % ARt vt
with probab|I|ty maSSwt ") associated with the element

0 0D ) N ”NZ)} to generate sam-

L FEN) ANy

Lo:ts )
ples{xéz?‘ﬂgtl 1)7 (l 1) ,—(1 ) ) T lNZ)}al - 17"';Nm1
so that for anym,

_(m,1 m,1 _(m,N. m,N_.
P{{‘TOt ) g )7T£ )""’ng )7T£ )}: (19)
i) ~(3,1) ~(4,1 ~(i,N.) ~(¢,N_ [

(30) 30D 0D SN GaNDyy 60
where (i’j) can be defined as rﬁi’j) =
. (3 ) v D)/ (5|2}, yo4 1) according

to the definition ofrt ) in Inductive Assumption 3.3
(See Section 11I-C1 for more detailed explanation).

As a result, it follows from (17) that an unweighted
empirical approximation op(z.|yo:+) is obtained as

g 5x0t—:c0t

Measurement update af based orny,

By using importance sampling, this step aims to derive
a weighted empirical approximation qf(zdxéf%,yw).
Simple calculation shows that

DN, (5170 t|y0 it (20)

(w6 vour) o p(ailal), you 1 )p(elaf”, ) (21)
From Inductive Assumpuon 3.2, for eaciat | =
1,...,N,, the partlcle5zt ), j=1,..,N,, are gener-
ated from the proposal funct|0r(zt|x01,y0t 1). There-
fore w(zt|x0t,y0 .+—1) Is chosen as the importance func-
tion. On the other hand, note that an approximation
DN. (5§i7j)|$82ayo:t—1) of P(Ezgi’j)mégayo:t—l) has been
given in Inductive Assumption 3.3.

Then using importance sampling and also noting the7)

definition of rti’j) yields, for eachi = 1,..,N,, a

weighted empirical approximation @)f(zt|:z:(({)t, Yo:t) @s

p. Gl yo) = Do a6z - 5) (22)
j=1

whereqt(i’j) is evaluated according to

Z-W =1 (23)

Generation of partlcle$t+1, i=1,...,Ng

Assume that the partlcleysHl, i=1,...,N,, are gener-
ated according to the proposal functiof;. |xéfi, Yo:t)-
Measurement update ef based onr;,

By using importance sampling, this step aims to derive
a weighted empirical approximation ptz:tlo%éfiﬂ, Yo:t)-

@ o plyeal? Z0 el

Simple calculation shows that
p(%@éﬁﬂayo;t) o8 p(ztlzvff)t,ym 1) (yt|$§l),zt)
Xp($t+1|$t  2t)

Analogously to step 3), choose(ztlxo yOt 1 as the
importance function and note thp,t, {” |x0t,y0t 1)

is an approximation of(z, 7(0:9) |x0t,y0t 1). Using im-
portance sampling and also noting the deflnltlor’riéf’)

yields, for each: = 1,...,N,, a weighted empirical
approximation ofp(ztlzi((ﬁﬂ,yo:t) as

(24)

N.
P (lES) 41 yor) =Zq£”>6<z -z (25)
where &), 2 (xézi,xile) and ¢\ is evaluated
according to
a"? o plyslat” 2" (@ 2y 2 s
N.
5 i (26)
> a1
j=1
Resampling of the particlesﬁi’j), it =1,..,Nz, j =

1,..,N,
By using resampling, this step aims to derive an un-
weighted empirical approximation @)f(zt|5:gf)t+1, Yo:t)-

For eachi = 1,...,N,, resampleN, times from the
discrete dlstrlbutlon overz\") j = ., N.} with
i,5)

assomated with the elemen
1,...,N.}, so that for

probability mass;lt
to generate sample@z(” i =
any m,

P{z"™ = 7"} = (27)
As a result, it follows from (25) that for each =

1,.. Nz, an unweighted empirical approximation of
(zt|:c0 %Jrl,yo ¢) is as follows

qgw)

(w)

pNz(Zt|$0t+17y0t N 26 (28)
Generation of particlestfﬁl), i=1,. Nm,j =1,...N,
Assume that for each:tle, i =1,..., N, the particles
ét(ﬁjl) j = 1,..,N,, are generated according to the

proposal functionr(z;1 |5:((f;1+1 L Yo:t)-

By using importance sampling, we try to derive a
weighted empirical apprOX|mat|on of 211 |:c0 1 Yoit)-
First, chooser(zt+1|:z:0 1+1,y0 +) as the importance func-
tion. Then from (28) and

p(Zt+1 |$0;t+17 yo;t)

(29)
= /p(Zt|CCo;t+1, Yo:t)D(Ze41 | Teet 41, 2 )d2e
an approximation ofo(zt+1|féfi+l,yo;t), 1 =1,..., Ny,
can be obtained as
PN, (2141 |CEE)Z;35+1, Yo:t)
(30)

N
1 & (i il

= 5 2Pl o)
Z =1



Now using importance sampling yields that for=  7) Generation of particlestfl),z =1,.,Nzj=1,..,N,

1,..,N;, a weighted empirical approximation of For eachi = 1,..,N,, the partcheSZtJr’Jl),j -

p(Zt+1|$?82+1, Yo.t) as follows NZ, are generated accordrng to the proposal function
~ (1) (1) (%)
(i m(zt41|T ,Yo:¢) WhereZ = (x4, T
PN, (Zt+1|17(()z)t+1,y0t) ( t+ | 0t+1 t) 0:t+1 ( 0:t t+1)

(31) C. Implementation issues

1,7) ~(1,1
- Zrt“)(s (201 = 53] /Z i 1) Two resampling stepstnlike most of PFs in the lit-
erature, the DPF has two resampling steps, i.e., step 2) and
wherergﬁ) is evaluated according to step 6). Furthermore, the second resamphng bears a paralle
(i) (6.3) 1 =(0) )1 ~(0) structure. This is because the particids”, i = 1,..., N,
Tyt = PN (T 1801, Yo ) /(20T [ B0 g1, v0:e) - (32) j=1,...,N_, can be divided intaV, mdependengroups in
Finally, from (31) and terms of the index. Therefore, the second resampling can be
implemented in parallel.
P(Yer1[20:e+15 Yo:t) (33) In the implementation of the first resampling, it
_ would be helpful to note the following points. For
= /p(2t+1|170:t+1ayo:t)p(yt+1|$t+17Zt+1)dzt+1 i () ( 1) Nx7 ~(z 1) T zNz)} is assomated )Wlth
1) ~(2,1 ~ ~(1
an approximation . (yt+1|570 t+1,y0t) of 1Zou? .., } accordrng to the definitiom,””’ =

(w) 5(4,5) 3
(e |5 ++1:Yo:¢) can be obtained as (11) withreplaced b (% |x0t’y°t 1)/7T( |x0t’y°t 1)- Therefore, af

7,1 ~(1, .
by t 4+ 1. In turn, it can be seen from (20), (22), step 4), steE?r r()esamplhjr\][g) Of{fo 02 e Z hi = L Ny
7), and (32) that Inductive Assumptions 3.1 to 3.3 hold with’ > 7t~ '} @ (1117) sz('Z J\fr;OU'd accordingly be
t replaced byt + 1. Hence, we have completed the derrvatrof\esamF"Gd to obtain{r,”",...r, "'}, i = 1,..., N,
of the DPF by the induction principle. Accordrng to the def|n|t|on ofr(” ,E”> can be de-

fined asr| ’”fp (2] ’”|:c0t,y0t )/7(Z 128, you1)-

0D A1) SN N _
B. Summary of the filtering algorithm As a result, {z(;, 7", 7", 20N RPN, i
1,...,Ng, is resampled in step 2). Moreover, since the

Initialization particles a) i = 1,.,N, wil not be used in

Inrtrallrze the pa”'C'?iﬂ) Np(x({)(’i)l :,1""’Nm’ and _for the future, it is actually only necessary to resample
each:zc0 , the particles; "’ ~ p(20]2”), j =1, ..., N.. With I (i) (1) (1) ~(i,N2) ~ (i,N.)

’ =1,..,N,, to gen-
a slight abuse of notation le{z) = pn. (zo|zo.—1,%0.—1) = Tt & T 1t " b v 9

" erate xz),z( ), (“), 2N (i) 2_1 N,
m(zo|®o:—1,y0:—1) and p(zolzo) = pPn.(20lZ0,y0:=1) = {oe”, 2 "t ¢ b
(20|70, Yo:—1)-

2) Construction of the proposal functronlsrke [15] where
At each time instantt > 0) the “prior” is c(rlt)osen as the prop(()is)al function, we try to
choosep(xiy 1|7y, Yo:¢) @nd p(z¢41]Zg.;41.Y0:¢) @s the pro-
1) Measurement update @t” based ony; osal functions( |x(i) ) and (= |I (i) ),
The importance werght&:t V= 1,..., N,, are evaluated P . \Lt411L0:15 Yo:t t+1 )0 t4+1> Yo:t
according to (18). respectively. Unlike [15], howeverp(a:t+1|:z:0t,y0 +) and

2) Resampling of{xozi’ét(l 1)7~( ).'.72£i,Nz)7f§i,Nz)},i: p(zt+1|:1~cg35+1,y0t) are usually unknown. Therefore, we
1,..,N, need to construct approximations Mxt+1|x0t,y0t) and
According to 89), resample p(zt+1|:vo t+1,y0t) such that the partrclesﬁﬁl and Z§+1)a

ff)t,z“ 1)’~§1 1) -,}(lN) (i, N= },i =1,.,N, to j = 1,..,N; can be sampled from the approximations,

generate samples{:col?t Zt(z 1), W) BN Ny respectively.
i=1....N,, where fort > 0, 7 ~(1 7 is defined according A Convenientway to construct those approxrmatrons is given
- T

to (32) as follows. From (22), an approximation p(xt+1|x0t,y0t)
3) Measurement update of based ony; . can be obtained as
Forz‘ = 1,...,N,, the importance Weighta WG = ; N P
N, are evaluated accord|ng to (23). o (@l von) = > @ plava |2, Z5)  (34)
j=1

4) Generatron of partrclesctzL yi=1,..., N,
For eachi = 1,..., N,, xt421 is generated according tolIn turn, a further approxrmat|0n qf> xt+1|x%t,y0t can be

the proposal funCtIOIT(xt+1|:c0:t,y0:t). obtained asf\/’(le, Eﬁfﬁl) with fCt+1 andEtH, respectively,

5) Measurement update of based onz; the mean and the covariance of the discrete distributiom ove
Fori = 1,...,N,, the importance weightg"”, j = {#%.j = 1,..., N.} with probability mass{"*’ associated
1,..., N,, are evaluated according to (26). with the eIementrEJ;l) ~ plays|z?, 20D, Therefore, for

6) Resampling of the particlest(”), i =1,.,Ny, j = i=1,.. N, the partrcle:ctJZ1 can be generated from
1,....,N,

A:cccrding to (27), for each = 1,..,N,, resample w(@esiles), yor) = M@, 201) (35)

the_particleszt(z"”, Jj = 1,..,N., to generate samples On the other hand, from (282_ and (29), an approximation
20 =1,.., N.. BN (416011, v0:4) O p(2i11176,)41, 904) has already been



given in (30). Then, it follows from (30) and the assumptiogf(:cgi))Qf(gf(:cgi)))T) with xﬁfﬂ and Etﬂzl, respectively,
that p(z¢+1|®t.e41, 2¢) is known that, for each = 1,..., N, the mean and the covariance of the discrete distribution

the particleét(fl), j=1,...,N, can be generated from {$t+1 Jo= ., N.} with probability massq(”) asso-
N ~ (@) (36) ciated with the elementrgfl) ~ p(xes 1|:ct , (J)). For
W(zt“'xo't“’yo't)_pNz(Zt“'xO'Hl’yo't) this special casesm(zei1|zl), yor) = N(iﬁfﬁl,ziﬁzl +
Remark 3.2:From (25) and (29), another approximation ofyz ((")Q# (g (x{"))T). o
p(2t+1|117(() )t+1, Yo+) can be obtained as While we have assumed the proposal functions in the form
i of m(xe|2) 1 yo—1) and w(z|75), yo:e—1), it is possible
pNz(Zt+1|I0:t+1’yO¢t) to choose proposal functions in more general forms. For
B NZ (id) o(z |x ~(6) ) (37) exarnple, in thl_e importance sampling of (24), the proposal
- 9 t+1T0410 ¢ 5 Yout funCtlonW(zt|th,y0t 1) can be replaced by another proposal
j=1

function in the form ofw(zt|xé 1+1790t 1). Moreover, this
This o)bservatlon shows that the PF used to estimajew proposal function, together W|th the two proposal func-
(zt|a:0t,y0 ¢+) Is closely related to the so-called margmad,onsﬁ(a;th70t > Yoit—1) andﬂ(ztum,%t 1) can be further
PF [21] A marginal PF would sample the parthlégt made dependent og,. That is, in the importance sampling
Jj=1,.., N, from of (14), (21) and (24), the proposal functlons in the form
of m (x| 1. yo:), T(ze ) o) ANAT(20]Z5) 41 y04) can
be used, respectively. Due to the space limitation, we do not
_ Z (i,5) ( E _(i,)) ) (38) discuss this issue here and we refer the interested reader to
R CRY t+1’zt » Yoit for example, [2,7, 13, 23] for relevant discussions. Fipaile
=t remaind that if these proposal functions in more generah$or
According to [21], sampling from (38) is precisely equivare used, then slight modification is needed to make to the DPF
alent to first resample the partlcleé” , = 1,..,N,, algorithm.
j = 1,...,N. according to (27) and then sample the par- 3) Computing the state estimaté& common application of
ticle éfﬁrjl from (zt+1|:100 t+172t( )79016) If (37) is cho- a PF is to compute the state estimate, i.e., the expected mean
sen as the proposal function, |e,r(zt+1|x0 t+17y0t) — of the state. For system (3), the state estimate,aind z, are

oy (2041|735 +1,Yo:¢) in the marginal PF, then sampling fromdefined as
(38) would be exactly the same as what we did. In addition, Tt = Ep(asjyorn) ()s 2t = Ep(aalyonr) (22) (41)

like the marglnal PF, for each= 1, ..., N, the computational
cost Ofrt 7]), j=1,..,N., is (’)(NQ) However, this should Then the approximation of;, andz, can be computed in the

not be a problem as a small., of particles are usually usedfollowing way for the DPF. Note from (17) thj\?"(xtlyo :t) has
to apprOX|mate)(zt|:v0t,y0 +). Moreover, a couple of methods"}ln empirical approximatiopy, (z:[yo:t) = >, wy "0 (z¢ —
have been given in [21] to reduce this computational cost. @n’). Then, an approximatiot, of z, can be calculated in
the other hand, if (36) is chosen as the proposal functidhg following way
thenft(l'“) =1,i=1,..,Ng, j=1,..,N.. As a result, the
resampling of{ff’l), ...,ff’NZ)},i =1,..., N,, is not needed = By, (@elyon) (1) Zw(z (@) (42)
and the computation of (11), (23) and (26) is simplified®

Remark 3.3:If system (3) has a special structure, then th&najogously, note from (20) and (22) thap(z:|yo.)

construction 0fﬂ'(a:t+1|:170)t,y0 +) can become simpler. _We has an emplrlcal approxlmatlonpzv,,zvz(Ztlyo.t) =
mention two cases here. First, assume thatathb/namlcs 1I Zz 12 V- g 73)6(Zt _ zt(m))- Then, an approximation

(2t 41 |i'ézzg+17 Yo:t)

of system (3) is independent af thenp(xt+1|th,yo ¢ = 2, of z, can be calculated as

p(l‘t+1|f£t ) and thus we can choose(:vt+1|:vf):)t,yo_t) = N. N,

p(:ct+1|:c§ )) Systems with this special structure have been : _ g (ee o) (20) = L ZZ (4.3) (z,y) (43)
studied in the literature before, see e.qg., [11]. Secorsijrae PNz o Ne =~

that system (3) takes the following form
IV. DISCUSSION

L1 = fi (@, 20) + g7 (2)vf : , o i
Ze1 = [ (w0, 20) + g7 (0, 207 (39) In the DPF algorithm, the summation calcul}auen in
s L A ! the normalizing factor (the denominator) Ofugl) in
Ye = he(we, 2, e0) (18) and the first resam!ahn i.e., the resampling of
wheref#(-), f7(-), g7 (-), g7 () andhy(-) are known functions, {#{", 2", 7" ., 200N 7! ) = 1,...,N,, are the
v is assumed white and Gaussian distributed according toonly operations that cannot be Implemented in parallel. Be-
- - o\ T sides, the remaining operations including the second resam
vy = { Utz } ~N (0, { Qjm ( tz) D (40) pling, i.e., the resampling of the particleg’j), i=1,.., Ny,
¢ @ j =1,..,N,, can be divided intaV, independenparts in
Then from (34), a further simplified apprOX|mat|0n ofterms of the index and can thus be implemented in parallel.

p(wt+1|x0t,y0 ;) can be obtained as/\/(:th, zﬁjl + In this sense, we say that the DPF has the advantage over the



cu : W
(7
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Fig. 3. The architecture of the PF with parallel structutecdnsists of a
central unit (CU) and a number of processing elements (PErevthe CU
handles the operations that cannot be implemented in pbaaltl the PEs are

run in parallel to deal with the operations that can be imgletad in parallel.

regular PF in that the DPF can increase the level of parstfeli
of the PF.

The underlying idea of the DPF is different from that of
the distributed PFs, such as the DRPA-PF and the DRNA-
PF (see Section 1), while they all have parallel structufasT
difference results in a couple of unique features of the DPF i
contrast with the distributed PFs, which identify the paian

of the DPF in the application of PFs in real-time systems

N®_N ¢,-particles

and the parallel implementation of PFs. In the remaining par
of this section, we first briefly review the DRPA-PF and the
DRNA-PF, and then we point out the unique features of the
DPF. Finally, we show that there exist two ways to further

increase the level of parallelism of the DPF. PE, cu ;
Before the discussion, it should be noted that all the DPF, DRPA-PF DPF
the DRPA-PF and the DRNA-PF have the architecture é% 4. Sequence of operations performed by the specifiedniédBre CU
shown in Fig. 3. for the DRPA-PF and the DPF. The data transmitted betweerspkeified
PE and the CU and between different PEs are marked. For theADRP
PF, the abbreviations are MU (measurement updat€oof based ony:),
A. Review of the DRPA-PF and the DRNA-PF [5] Inter R (inter resampling), Intra R (intra resampling), RRarticle routing),
A h h | &l icl h and TU (generation of partlclesHl = .., M). For the DPF, the
ssume that the sample space contaiisarticles, where abbreviations are MY (measurement update ofOt based ony:), R:
M is assumed to be the number of particles that is need@lampiing of{z#(?, (1 70D s@6N) z@6Nay g Ny,

for the sampling importance resampling PF (SIR-PF) [13] ®R (particle routing), Mlﬁ (measurement Update of based ony:), TU,
the bootstrap PF [15] to achieve a satisfactory performani@eneration of particles ("), i = 1,. » Nz), MUZ (measurement update of
for the filtering problem of system (1). Then the sample spagebased onz: 1), R. (resampling sz( P =1, Na, j =1, N2)
is divided into K disjoint strata wherex is an integer and and TU. (generation of particles\}), i =1,..., No, j = 1,..., N2).
satisfies1 < K < M. Further assume that each stratum
corresponds to a PE. Before resampling each PE thusvhas
particles whereV = M/K is an integer.

The sequence of operations performed byfktiePE and the
CU for the DRPA-PF is shown in Fig. 4. The inter-resamplin
is performed on the CU and its function is to calculat
the number of particlesV(*) that will be produced after ©
resampling for thekth PE. E(N(*)) should be proportional
to the weightiV (¥) of the kth PE which is defined as the sum
of the weights of the particles inside tlkéh PE. In particular, .
N® is calculated using the residual systematic resamplify Unique features of the DPF
(RSR) algorithm proposed in [4]. Onc¥ ™ k = 1,.... K, The parallel structure of the DPF is created by decomposing
are known, resampling is performed inside tRePEs inde- the state space, differing from the parallel structure @& th
pendently which is referred to as the intra-resampling.eNodistributed PFs which is created by dividing the sample spac
that after resampling, fok = 1, ..., K, the kth PE hasN(*)  In the following, we will show that this difference results i
particles andV(*) is a random number because it depends @ncouple of unique features of the DPF.
the overall distribution of the weightd’*), k = 1,..., K. On Before the discussion, the sequence of operations pertbrme
the other hand, note that each PE is supposed 0 be respondligitheith PE and the CU for the DPF is shown in Fig. 4. The
for processingV particles and to perform the same operatiorsummation calculation in the normalizing factormgf‘ in (18)

in time. Therefore after resampling, the exchange of pastic and the resampling ofz\”, 2" (01  5(6N) 5Ny

among the PEs has to be performed such that each PE has
N particles. This procedure is referred as particle routing
nd is conducted by the CU. According to [5], the DRPA-
F requires a complicated scheme for particle routing due
o the proportional allocation rule. In order to shorten the
delay caused by the complicated particle routing scheme in
th DRPA-PF, the DRNA is in turn proposed in [5].



i=1,...,N,, are performed on the CU. Assume that there atee DRPA-PF and the DRNA-PF have been given in [5, 22].
N, PEs, and for each = 1,..., N, theith PE handles the Analogously, we can also give the ideal minimum execution
ith independent part of the remaining operations of the DRfme of the DPF. Like [5, 22], the following assumptions are
In particular, for each = 1, ..., N,, theith PE handles the made. Consider an implementation with a pipelined progesso
resampling of the particles™”, j = 1, ..., N.. Therefore, the Assume that the execution time of the particle generation
resampling of the particlezt(i’j), i=1,..,N,, j=1,..,N,, and the importance weights calculation of every particle is
is run in parallel on the PEs. LTk where L is the latency due to the pipelining af@i

Remark 4.1:In the particle routing of the DPF, the datdS the clock period. Also assume that the resampling takes
transmitted between different PEs depends on the resagnpfiieé same amount of time as the particle generation and the
result of{:zgi), 2t(i-,1)’ f§i11)7 . gt(i,Nz)’ ng‘,Nz)}, i=1,.., N, importance weights calculation. As a result, we have thalide

More specifically, there will be no data transmitted througfiinimum execution time of the DPF &80 = (2N, +
the ith PE if {i(i) 5(61) &(61) 2§iaNz) Ft(i,Nz)} is selected L + N + M, + 1)Tek. Here, 2N, represents the delay due

7Z ) PR L
only once in the retsamptling. Otherwise, the data transehittt® the resampling of the particleéf’”, j=1,..,N., and
through theith PE will be {z{™, 2™V m:D)  z(m.N-) — the corresponding particle generation and importance heig
if calculation,N, represents the delay due to the resampling of
(70 00 F0D - ON) SNy L Ny, M, is the
delay due to the particle routing and the extra dig is due
to the particle generation and importance weight caloutati

the particlez.”. O

ft(m’NZ)(} for some m = 1,..,N,. In particular,
(20 500 0 SN G0N s selected more than
once, thenm = i; if {:Egi),ét(i’l),ft(i’l),...,Egi’NZ),ft(i’NZ)}
is not selected, thenm = 1,...,N, and m # .
Therefore, the data transmitted between any two PEs, 539
the 7;th PE and theisth PE, will be either zero or

{jgm)’ggm,l)’fgm,l)’ ...72tm,Nz)’F§m,Nz)} for eitherm = i gi:;:rwo ways to further increase the level of parallelism ef th

orm = is. . Rk . .
In contrast to the DRPA-PF, the DPF allows a simpler parti—:(l;g‘e~(£'1r)s't~([ﬁ§ampJ'(';‘%Z)OfN(}_C‘Vf) DPF, ie., resampling  of
cle routing scheme. For the DRPA-PF, since after resamplifigc 2~ 7t > 2 57 i = 1, Ny, is the

the kth PE hasN® particles that is a random number, 4najor operation that cannot be implemented in parallel. If
complicate scheme has to be used for the DRPA-PF to maRe IS 1arge, then this resampling will cause a large delay.
all K PEs has equally¥ particles. For the DPF, however, sincdn order to further increase the level of parallelism of therD
after the resampling o{izf), 5251‘71)77:251‘71)’ o 251';]\]2)77:257;7]\[2)}’ and short_en the execution time, it is valuable to find ways to
i = 1,..,N,, all N, PEs still have the same number oft@ndle this problem. , _ .
particles, then the DPF allows a simpler particle routing 1WO Possible ways will be given here. The first one is

scheme and actually each PE can be treated as a singlegartitpightiorward and is to employ any of the distributed re-
in the particle routing. sampling algorithms proposed in [5,22] to perform the first

Given a PF with parallel structure, it works most efficientl resampling of the DPF and besides, the remaining parts of the

if each PE handles the same number of particles. The e |-PF stay unchanged. Nonetheless, we prefer the DRPA to the

ciency of the DRPA-PF usually decreases, since the numb },Qer distributed resampling algorithms, since it can pred

of particles produced by each PE are not evenly but randonii, Same result as the systematic resampling [20] according

distributed among the PEs. To be specific, note that the ti e[4]‘ i .
used by thekth PE to produceV(®) particles,k = 1,..., K, Compared to the first way, the second way only applies to

after resampling are usually not the same. This observatila#g?hd'rg%n: |0Vr:/al iystem @) ang I kl)s basttra]dtotnh an extt.ensmn
implies that the time used by the DRPA to produce th € - We have assumed above that the states

particles after resampling is determined by thigh PE that ecomposed into two parts according to (2). Actually, the

produces the larges¥**). Clearly, the more unevenly the DPF can be extended to handle the case where the &tate

numbers of particles produced by each PE are distribute ’decqmposed Into more_than two (at mog) parts. F_or
pstraﬂon, we briefly consider the case where the sgatis

the more time the DRPA takes to produce the particles aft 4 into th s Th I b
resampling. Especially, in the extreme case fiidt) > n(v ~decomposedinto three parts. 1he more generaf case can be
studied using the induction principle.

with k= 1,..., K, andk 7 k”, the efficiency of the DRPA- For convenience, assume that the statein (2) can be
PF will be decreased significantly. However, for the-DP'?Urther decom oseé iNto tWo parts. i.e
the ith PE that handles the resampling of particlééj), P ! WO parts, 1.€.,
Jj = 1,...,N., produces, after resampling, the same number 7, = { T, ] (44)
of particle5z§”), j=1,...,N.. Therefore, the DPF does not T2t
have the efficiency decrease problem of the DRPA-PF.  and accordingly, system (3) can be further decomposed into
Besides, it will be verified by two numerical examples in théhe following form
subsequent section that, the DPF has the potential to achiev
in a shorter execution time the same level of performance as e o
the bootstrap PF. However, the DRNA-PF actually trades PF 2041 = i (@ w20 20,017 (45)
performance for speed improvement [5, 22]. Zep1 = f{(T1e, T2, 20, 07)
Remark 4.2:The ideal minimum execution tim@g of Yyt = hi(z14, 24, 21, €1)

i1 = [ (X1, o, 2,00 ")
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wherezy; € R™1 20, € R%2, ¥ = [(vf")T (v7*)T]T  of the state estimate is measured by the Root Mean Square
with vyt € R™* oy2 € R™*2. Assume that the proba-Error (RMSE) between the true state and the state estimate.

bility densitiesp(z1,0|ly—1) = p(x1,0), p(z2,0l10,y-1) = For example, the RMSE of is defined as
P($C2,0|£61,0), P(Zo|£61,0,£€2,07y—1) = p(zo|$€1,0,$€2,0) and for
t > 0, plersi|mre, 20 20), P(@2p41|T1 0041, 200 20), 1 29 20000 _
p(2t|$1 tit+1, T2 t:t41, Zt) andp(yt|:v1 ty L2t Zt) are known. RMSE of z = oEn Z Z ||I% - j1Z£||2 (47)
T TS ; ’ . 250 20000 <
The filtering problem of system (45) can be split into three t=1 i=1

nested sub-problems according to the following factoidrat ) ) y
where with a slight abuse of notatiari, denotes the true state

(46) at time ¢ for the ith simulation andi! is the corresponding
state estimate. It is also tested how well the RMSE reflects

) A the accuracy of the estimated posterior densities (See RRema
where fori = 1,2, z; 04 = {xi0,..., %, }. It can be shown 5.1 for more details).

that the DPF can be extended to handle the filtering problem
of system (45) by using PFs to solve the three nested sub-
problems. Roughly speaking, a PF with,, particles ¢{),,, C. Performance evaluation: Timing
i = 1,...,Ng) will be used to estimate(z1,0..|yo0.¢), and
for eachi = 1, ..., N,,, a PF with NV, particles (c%i j=
1,..., Ny,) will be used to estimat@(a:zo:tlx%:t,yO:t), and
for eachi = 1,...,N,, andj = 1,...,N,,, a PF with NV,
particles will be used to estimaﬁz{zt|x§%:t,x§f’(§:)t,yo;t).
Similar to the DPF based on (4), the major operation that
cannot be implemented in parallel in the DPF based on (46)°
is its first resampling, i.e., the resampling &%, composite
particles. If a satisfactory performance of the DPF based on®
(46) can be achieved witv,, + N,, < N,, then the number
of composite particles involved in the first resampling o th
DPF will be reduced fromV, to N,,. Therefore, in this way
the level of parallelism of the DPF is further increased. If
the DPF is implemented in parallel, then the execution time
of the DPF will be further decreased as well. However, it
should be noted tha¥,, - V,., PEs are required to fully exploit
the parallelism of the DPF based on (46). Due to the space
limitation, we cannot include the extension of the DPF irs thi
paper and instead we refer the reader to [10] for the details.

(2t T1,0:4, T2,0:¢|Yo:t) = P(2¢|T1,0:¢, 2,0:¢, Yot )

X p($2,o:t|$1,o:t, yo:t)p(xl,o:t|yo:t)

One objective with the simulations is to assess the pofentia
efficiency of the parallel implementation of the DPF. Forttha
purpose, we record the following times

o Tg: This is the average execution time of the sequential
implementation of a PF.

Tep: This is the average time used by the operations that
cannot be implemented in parallel in a PF.

Tpi: This is the potential execution time of parallel imple-
mentation of a PF. For the bootstrap PF with centralized
resampling and the DPF, it is calculated according to
Tpi = Tep + (Tsi — Tep)/Nee Where Npg is the number

of processing elements. For the DPF, Mt = N,.. For

the bootstrap PF with centralized resampling,Ngk be

the maximal N, in the simulation of the corresponding
example. Here, the bootstrap PF with centralized resam-
pling means that besides the resampling, the remaining
particle generation and importance weights calculation
of the bootstrap PF are implemented in parallel. For the
DRPA-PF.T}; is calculated according t6, = Tcp+Tmir+

(Tsi — Tep — Tmir)/Nee Where Npe = K and Ty is the

V. NUMERICAL EXAMPLES average maximal intra-resampling time for the DRPA-PF.

In this section we will test how the DPF performs on two
examples. The simulations are performed using Matlab under

the Linux operating system. The platform is a server coimgjst D. Performance evaluation: Divergence failures

f eight Intel(R d X R) CPUs (2.53GHz). . ) .
of eight Intel(R) Quad Xeon(R) s ( 2) The ratery is used to reveal how often a PF diverges in

. the 20000 Monte Carlo simulations. The bootstrap PF and the

A. Algorithms tested DRPA-PF are said to diverge if their importance weights are

For the two examples, the bootstrap PF is implementedl equal to zero in the simulation. The DPF is said to diverge
in the standard fashion, using different number of parsiclef wf’), i=1,...,N,, are all equal to zero in the simulation.
(M). The DPF is implemented according to Section Ill-Bdnce the divergence of a PF is detected, the PF will be rerun.
for different combinations of # and z particles” (v, and
N.). The DRPA-PF according to [5] is tested as well, using
different number of PEsK). The formulas of [5] has beenE. Sketch of the simulation

closely followed, but the implementation is our own, andbit i .
of course possible that it can be further trimmed. In additio. For the two examples, the bootstrap PF usigparticles

. : O is first implemented and its accuracy measured by the RMSE
as suggested in [17,20] systematic resampling is chosen o
i : , will be treated as the reference level. Then it is shown that t
the resampling algorithm for all algorithms tested.

DPF using suitablév,, and N, “x andz particles” can achieve
_ the same level of accuracy. In turn, the DRPA-PF usiig
B. Performance evaluation: Accuracy particles, but with different number of processing eleragst

In the tests, the performance of all algorithms are evatlatalso implemented. Finally, the bootstrap PF usiiig particles
by 20000 Monte Carlo simulations. Basically, the accuraéy implemented.
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TABLE |
SIMULATION RESULT FOR SYSTEM(48)WITH (49) — “SEE SECTIONSV-B - V-D FOR EXPLANATIONS OF THE NUMBERS

Case RMSE ofz¢, 2] Ts (Sec) Tep (Sec) Tpi (Sec) Tq
Bootstrap PFM = 1000 [2.0173, 2.3322] 0.1891 0.0313 0.0326 0.0155
DPF, N = 100, N, = 19 [2.0104, 2.3497] 0.3545 0.0168 0.0202 0.0133
DPF, N, = 120, N, = 19 [1.9914, 2.3045] 0.3901 0.0176 0.0207 0.0175
DPF, N, = 110, N, = 24 [1.9907, 2.3154] 0.4127 0.0175 0.0211 0.0113
DPF, N, = 120, N, = 24 [1.9906, 2.3259] 0.4338 0.0179 0.0214 0.0076
DRPA-PF,M = 1000, K = 40 [2.0222, 2.3557] 0.6324 0.0671 0.0878 0.0124
DRPA-PF,M = 1000, K = 25 2.0332, 2.4049] 0.4769 0.0565 0.0799 0.0124
Bootstrap PFM = 2000 1.9714 2.2664 0.2579 0.0510 0.0528 0.0059

F. Two dimensional example

0.7,

—PF, M=1000
—DPF, NX:IUO, NZ:lE

Consider the following two dimensional nonlinear system

0.6

Zt -
Tip1 = Ty + m + vy
t

25z
Zea1 = @+ 052, + 5 +8cos(1.2t) +vi  (48)
1+ %

2
z
Yy = atar(xt) + 2—6 + €t
where [zg 20]7 is assumed Gaussian distributed witt
[0 20]T ~ N(0,Iax2), v, = [v¥ v7]T ande, are assumed o
white and Gaussian distributed with

0.1

v NN(O, [ T D ande, ~ N(0,1)  (49)

|
0 50 100 150 200 250
Time (Sec)

For the DPF, the proposal functions are chosen accordi _
to Remark 3.3 and (36). The simulation result ojeR50] is _ . o
shown in Table I, from which it can be seen that the DPF h§¢: 5 The distance_,, [F(z¢lyo.¢) — F(z¢|yo:)| between the “true

. T . . . posterior cumulative distributiod(z¢|yo:+) and the empirical approximation
the potential to achieve in a shorter execution time the sag@ne posterior cumulative distributiod”(z¢|yo.:) obtained by using the
level of accuracy as the bootstrap PF. bootstrap PF and the DPF (with/ = 1000 and N, = 100, N, = 19

. . . particles, respectively) as a function of timgThin curve: the bootstrap PF,

Remark 5'1'_|n Table I, the accuracy of the algorlthm§ ISthick curve: the DPF). The result is an average over 2000Qilaions.
measured entirely through the RMSE of the state estimate
(47). Since the PF actually computes estimates of the posster
densityp(z:, zo.¢|y0.¢) one may discuss if this would be a more _ .
appropriate quantity to evaluate for comparison. Actyatie G- Four dimensional example
state estimates; could be quite accurate even though the . . _ . _
estimate of the posterior density is poor. To evaluate that,Consider the following four dimensional nonlinear system
we computed an accurate value of the true posterior density
using the bootstr:_ap PF with_ “many” (100000) pa_rticles, a}r}d @141 = 0.521,4 + 8sin(t) + v}
compared that with the estimates of the posterior densities

— T2
using the bootstrap PF and the DPF with few&f & 1000 a1 = 0421, + 05220 + vy

and N, = 100, N, = 19) particles. To avoid smoothing issues 21441 = 21t + Lg + !

for the empirical approximations of the posterior densitie 1425,

we made the comparisons for the posterior cumulative distri 29441 = 21t + 0.522, (50)
butions (empirical approximations of the posterior curtivéa 25294 + 8 cos(1.28) + v

distributions). The result is shown in Fig. 5. Moreover, let 1+23, ' ¢

zy denote the true mean of;, then (47) withz; replaced S1gt Lo 2,

by 7} is also calculated: it is 0.7239 for the bootstrap PF with Y = ————5— +atan(zi;) + -~ + e

M = 1000, and 0.6851 for the DPF withV, =100 and,=19. T4y, 20

From the above simulation results, we see that the DPF is

at least as good as the bootstrap PF in approximating Rferer, = (214 207 and z, = [214 204]7. 2] 2T]7 is
posterior cumulative distribution. We conclude that the #/ a5sumed Gaussian distributed witf 2717 ~ N(0, Iixs),
(47) gives a fair evaluation of the accuracy of the staterest ,, — (5T (v7)T]T with vF = [of* 0®2]7 and v7 =
produced by the DPF for system (48) with (49). O [vf* v2]T, ande, are assumed white and Gaussian distributed
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TABLE Il
SIMULATION RESULT FOR SYSTEM(50) WITH (51) — “SEE SECTIONSV-B - V-D FOR EXPLANATIONS OF THE NUMBERS

Case RMSE ofZ1,¢, #2,¢, 21,¢, 22,¢]  Tsi (Sec) Tep (Sec) Tpi (Sec) Tq
Bootstrap PFM = 1500 [1.1566, 1.3494, 2.0111, 2.8241] 0.2022 0.0316 0.0339 0.0072
DPF, N, =50, N, = 29 [1.1707, 1.3678, 2.0485, 2.9383] 0.2366 0.0145 0.0190 0.0109
DPF, N, = 60, N, = 49 [1.1633, 1.3569, 1.9879, 2.7911] 0.3255 0.0160 0.0212 3900
DPF, N, =75, N, = 39 [1.1610, 1.35371.9794 2.7547 0.3309 0.0164 0.0206 0.0040
DRPA-PF,M = 1500, K = 30  [1.1564, 1.3490, 2.0028, 2.7894] 0.5083 0.0470 0.0669  83.00
DRPA-PF,M = 1500, K =50 [1.1566, 1.3495, 2.0148, 2.8302] 0.6951 0.0607 0.0780 (Q7.01

Bootstrap PFAM = 3000 [1.1518 1.3419 1.9794 2.7601]  0.3105 0.0539 0.0573 0.0021
with sub-problems using PFs. Returning to the questions in the
10 0 0 intuitive preview in Section II-A, we have seen that the DPF
01 0 0 can produce results of not much worse accuracy compared to
L L , ande; ~N(0,1) (51) the regular PF, with comparable number of particles. We have
0 0 01 10 also seen that the structure gives a potential for more effici

calculations. The advantage of the DPF over the regular PF
Since the -dynamics” does not depend on, we let |ies in that the DPF can increase the level of parallelism
w(@es1]s), yo) = plresalz”’) and choose the other pro-of the PF in the sense that part of the resampling has a
posal function according to (36). The simulation resultrovgyarallel structure. The parallel structure of the DPF isated
[1 150] is shown in Table II, from which it can be seen thapy decomposing the state space, differing from the parallel
the DPF has the potential to achieve in a shorter executigifycture of the distributed PFs which is created by didin

time the same level of accuracy as the bootstrap PF. the sample space. This difference results in a couple ofueniq
features of the DPF in contrast with the existing distrildute
H. Summary PFs. As a result, we believe that the DPF is a new option for

Regarding the accuracy, comparison of the first part of tﬁ)grall_el implementation of PFs and the application of PFs in
real-time systems.

RMSE column in Tables | and Il shows that with suitably An interesting topic for future work is to study how to

chosenN, and N, the DPF achieves the same level of accu- . - . .
. compose the state given a high dimensional system such tha
racy as the bootstrap PF. On the other hand, with comparaple o ) .
€ execution time of the parallel implementation of the DPF

number of particles (it is fair to compafd with N..(N- +1)) can be maximally reduced. Another interesting topic is &b te

the accuracy is not much worse for the DPF than for t N
bootstrap PF. In fact, in Table Il the DPF even pen‘orn?sﬁe DPF i different types of parallel hardware, for example

slightly better than the PF for some of the states (no sitist graphical processing units (GPU) and field-programmatie ga

significance), illustrating that allocating points as irg.FL.c arrays (FPGA)'. : S : :

could actually be beneficial for some systems A further topic of future investigations is to generalize th
Regarding timing, comparison of tH&, and .Tpi column line pattern in Fig. 1.c to other lines and curves that may pic

in Tables | and Il shows that the execution time of the DPF" useful shapes in the posterior densities to be estimatesi.

can be shortened significantly if the DPF can be implementgasentlally involves a change of state variables befor@te

in parallel. Moreover, the DPF has a potential to offer bett& applied.

accuracy in shorter execution time. In particular, g of
the DPF is less than that of the bootstrap PF with central-

ized resampling. It is valuable to note that tﬁ% of the [1] C. Andrieu and A. Doucet, “Particle filtering for partial observed
DPFE i ller th ¢ f the bootst PE with Gaussian state space modeligurnal of the Royal Statistical Society:
IS even smaller than HEP 0 € bootstrap wi Series B (Statistical Methodologwol. 64, pp. 827-836, 2002.

centralized resampling, which is actually the lower bound2] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “Atdrial
of the execution time of the bootstrap PF with centralized ©n particle filters for online nonlinear/non-Gaussian Bsge tracking,”

. L . . . IEEE Transactions on Signal Processingl. 50, pp. 174-188, 2002.
resampling. In addition, as discussed in Section lV'C'IHe [3] N. Bergman, “Recursive Bayesian estimation: Navigatamnd tracking

of the DPF can be further shortened by using any one of the applications,” PhD thesis No 579, Linkoping Studies ine®ce and
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