
System Identification ofNonlinear State-SpaceModels ?

Thomas B. Schön a, Adrian Wills b, Brett Ninness b
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Abstract

This paper is concerned with the parameter estimation of a general class of nonlinear dynamic systems in state-space form.
More specifically, a Maximum Likelihood (ML) framework is employed and an Expectation Maximisation (EM) algorithm is
derived to compute these ML estimates. The Expectation (E) step involves solving a nonlinear state estimation problem, where
the smoothed estimates of the states are required. This problem lends itself perfectly to the particle smoother, which provide
arbitrarily good estimates. The maximisation (M) step is solved using standard techniques from numerical optimisation theory.
Simulation examples demonstrate the efficacy of our proposed solution.
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1 Introduction

The significance and difficulty of estimating nonlinear
systems is widely recognised [1, 31, 32]. As a result, there
is very large and active research effort directed towards
the problem. A key aspect of this activity is that it gen-
erally focuses on specific system classes such as those de-
scribed by Volterra kernels [4], neural networks [37], non-
linear ARMAX (NARMAX) [29], and Hammerstein–
Wiener [41] structures, to name just some examples. In
relation to this, the paper here considers Maximum Like-
lihood (ML) estimation of the parameters specifying a
relatively general class of nonlinear systems that can be
represented in state-space form.

Of course, the use of an ML approach (for example, with
regard to linear dynamic systems) is common, and it is
customary to employ a gradient based search technique
such as a damped Gauss–Newton method to actually
compute estimates [30, 46]. This requires the computa-
tion of a cost Jacobian which typically necessitates im-
plementing one filter derived (in the linear case) from
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a Kalman filter, for each parameter that is to be esti-
mated. An alternative, recently explored in [17] in the
context of bilinear systems is to employ the Expectation
Maximisation algorithm [8] for the computation of ML
estimates.

Unlike gradient based search, which is applicable to max-
imisation of any differentiable cost function, EM meth-
ods are only applicable to maximisation of likelihood
functions. However, a dividend of this specialisation is
that while some gradients calculations may be necessary,
the gradient of the likelihood function is not required,
which will prove to be very important in this paper.
In addition to this advantage, EM methods are widely
recognised for their numerical stability [28].

Given these recommendations, this paper develops and
demonstrates an EM-based approach to nonlinear sys-
tem identification. This will require the computation of
smoothed state estimates that, in the linear case, could
be found by standard linear smoothing methods [17]. In
the fairly general nonlinear (and possibly non-Gaussian)
context considered in this work we propose a “parti-
cle based” approach whereby approximations of the re-
quired smoothed state estimates are approximated by
Monte Carlo based empirical averages [10].

It is important to acknowledge that there is a very signif-
icant body of previous work on the problems addressed
here. Many approaches using various suboptimal non-
linear filters (such as the extended Kalman filter) to ap-
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proximate the cost Jacobian have been proposed [5, 22,
27]. Additionally, there has been significant work [3, 12,
40] investigating the employment of particle filters to
compute the Jacobian’s necessary for a gradient based
search approach.

There has also been previous work on various approxi-
mate EM-based approaches. Several authors have con-
sidered using suboptimal solutions to the associated non-
linear smoothing problem, typically using an extended
Kalman smoother [13, 15, 19, 43].

As already mentioned, this paper is considering parti-
cle based approaches in order to solve the involved non-
linear smoothing problem. This idea has been partially
reported by the authors in two earlier conference publi-
cations [45, 47].

An interesting extension, handling the case of miss-
ing data is addressed in [20]. Furthermore, in [26], the
authors introduce an EM algorithm using a particle
smoother, similar to the algorithm we propose here,
but tailored to stochastic volatility models. The sur-
vey paper [3] is one of the earliest papers to note the
possiblility of EM-based methods employing particle
smoothing methods.

2 Problem Formulation

This paper considers the problem of identifying the pa-
rameters θ for certain members of the following nonlin-
ear state-space model structure

xt+1 = ft(xt, ut, vt, θ), (1a)
yt = ht(xt, ut, et, θ). (1b)

Here, xt ∈ Rnx denotes the state variable, with ut ∈
Rnu and yt ∈ Rny denoting (respectively) observed in-
put and output responses. Furthermore, θ ∈ Rnθ is a
vector of (unknown) parameters that specifies the map-
pings ft(·) and ht(·) which may be nonlinear and time-
varying. Finally, vt and et represent mutually indepen-
dent vector i.i.d. processes described by probability den-
sity functions (pdf’s) pv(·) and pe(·). These are assumed
to be of known form (e.g.,Gaussian) but parameterized
(e.g.,mean and variance) by values that can be absorbed
into θ for estimation if they are unknown.

Due to the random components vt and et, the model (1)
can also be represented via the stochastic description

xt+1 ∼ pθ(xt+1 | xt), (2a)
yt ∼ pθ(yt | xt), (2b)

where pθ(xt+1 | xt) is the pdf describing the dynamics
for given values of xt, ut and θ, and pθ(yt | xt) is the pdf
describing the measurements. As is common practise, in
(2) the same symbol pθ is used for different pdf’s that
depend on θ, with the argument to the pdf denoting what

is intended. Furthermore, note that we have, for brevity,
dispensed with the input signal ut in the notation (2).
However, everything we derive throughout this paper is
valid also if an input signal is present.

The formulation (1) and its alternative formulation (2)
capture a relatively broad class of nonlinear systems and
we consider the members of this class where pθ(xt+1 | xt)
and pθ(yt | xt) can be explicitly expressed and evaluated.

The problem addressed here is the formation of an es-
timate θ̂ of the parameter vector θ based on N mea-
surements UN = [u1, · · · , uN ], YN = [y1, · · · , yN ] of ob-
served system input-output responses. Concerning the
notation, sometimes we will make use of Yt:N , which is
used to denote [yt, · · · , yN ]. However, as defined above,
for brevity we denote Y1:N simply as YN . Hence, it is
here implicitly assumed that the index starts at 1.

One approach is to employ the general prediction error
(PE) framework [30] to deliver θ̂ according to

θ̂ = arg min
θ∈Θ

V (θ), (3)

with cost function V (θ) of the form

V (θ) =
N∑

t=1

`(εt(θ)), εt(θ) = yt − ŷt|t−1(θ). (4)

and with Θ ⊆ Rnθ denoting a compact set of permissible
values of the unknown parameter θ. Here,

ŷt|t−1(θ) = Eθ{yt | Yt−1} =
∫
yt pθ(yt | Yt−1) dyt (5)

is the mean square optimal one-step ahead predictor of yt

based on the model (1). The function `(·) is an arbitrary
and user-chosen positive function.

This PE solution has its roots in the Maximum Like-
lihood (ML) approach, which involves maximising the
joint density (likelihood) pθ(YN ) of the observations:

θ̂ = arg max
θ∈Θ

pθ(y1, · · · , yN ). (6)

To compute this, Bayes’ rule may be used to decompose
the joint density according to

pθ(y1, · · · , yN ) = pθ(y1)
N∏

t=2

pθ(yt|Yt−1). (7)

Accordingly, since the logarithm is a monotonic func-
tion, the maximisation problem (6) is equivalent to the
minimisation problem

θ̂ = arg min
θ∈Θ

−Lθ(YN ), (8)
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where Lθ(YN ) is the log-likelihood

Lθ(YN ) , log pθ(YN ) = log pθ(y1)+
N∑

t=2

log pθ(yt | Yt−1).

(9)
The PE and ML approaches both enjoy well understood
theoretical properties including strong consistency,
asymptotic normality, and in some situations asymp-
totic efficiency. They are therefore both an attractive
solution, but there are two important challenges to their
implementation.

First, both methods require knowledge of the prediction
density pθ(yt | Yt−1). In the linear and Gaussian case,
a Kalman filter can be employed. In the nonlinear case
(1) an alternate solution must be found.

Second, the optimisation problems (3) or (8) must be
solved. Typically, the costs V (θ) or Lθ(YN ) are differ-
entiable, and this is exploited by employing a gradient
based search method to compute the estimate [30]. Un-
fortunately, these costs will generally possesses multiple
local minima that can complicate this approach.

3 Prediction Density Computation

Turning to the first challenge of computing the predic-
tion density, note that by the law of total probability
and the Markov nature of (2)

pθ(yt | Yt−1) =
∫
pθ(yt | xt)pθ(xt | Yt−1) dxt, (10)

where xt is the state of the underlying dynamic sys-
tem. Furthermore, using the Markov property of (2) and
Bayes’ rule we obtain

pθ(xt | Yt) =
pθ(yt | xt)pθ(xt | Yt−1)

pθ(yt | Yt−1)
. (11)

Finally, by the law of total probability and the Markov
nature of (2)

pθ(xt+1 | Yt) =
∫
pθ(xt+1 | xt) pθ(xt | Yt) dxt, (12)

Together, (11), (10) are known as the “measurement up-
date” and (12) the “time update” equations, which pro-
vide a recursive formulation of the required prediction
density pθ(yt | Yt−1) as well as the predicted and filtered
state densities pθ(xt | Yt−1), pθ(xt | Yt).

In the linear and Gaussian case, the associated integrals
have closed form solutions which lead to the Kalman fil-
ter [25]. In general though, they do not. Therefore, while
in principle (10)-(12) provide a solution to the compu-
tation of V (θ) or Lθ(YN ), there is a remaining obstacle

of numerically evaluating the required nx-dimensional
integrals.

In what follows, the recently popular methods of sequen-
tial importance resampling (SIR, or particle filtering)
will be employed to address this problem.

However, there is a remaining difficulty which is related
to the second challenge mentioned at the end of section
2. Namely, if gradient-based search is to be employed to
compute the estimate θ̂, then not only is pθ(yt | Yt−1)
required, but also its derivative

∂

∂θ
pθ(yt | Yt−1). (13)

Unfortunately the SIR technique does not lend itself to
the simple computation of this derivative. One approach
to deal with this is to simply numerically evaluate the
necessary derivative based on differencing. Another is
to employ a search method that does not require gra-
dient information. Here, there exist several possibilities,
such as Nelder–Mead simplex methods or annealing ap-
proaches [44, 48].

This paper explores a further possibility which is known
as the Expectation Maximisation (EM) algorithm, and
is directed at computing an ML estimate. Instead of us-
ing the smoothness of Lθ, it is capable of employing an
alternative feature. Namely, the fact that Lθ is the log-
arithm of a probability density pθ(YN ), which has unit
area for all values of θ. How the EM algorithm is capable
of utilising this simple fact to deliver an alternate search
procedure is now profiled.

4 The Expectation Maximisation Algorithm

Like gradient based search, the EM algorithm is an it-
erative procedure that at the k’th step seeks a value θk

such that the likelihood is increased in that Lθk
(YN ) >

Lθk−1(YN ). Again like gradient based search, an approx-
imate model of Lθ(YN ) is employed to achieve this. How-
ever, unlike gradient based search, the model is capable
of guaranteeing increases in Lθ(YN ).

The essence of the EM algorithm [8, 33] is the postulation
of a “missing” data set XN = {x1, · · · , xN}. In this
paper, it will be taken as the state sequence in the model
structure (1), but other choices are possible, and it can
be considered a design variable. The key idea is then to
consider the joint likelihood function

Lθ(XN , YN ) = log pθ(XN , YN ), (14)

with respect to both the observed data YN and the
missing data XN . Underlying this strategy is an as-
sumption that maximising the “complete” log likelihood
Lθ(XN , YN ) is easier than maximising the incomplete
one Lθ(YN ).
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As a concrete example, if the model structure (1) was
linear and time-invariant, then knowledge of the state
xt would allow system matrices A,B,C,D to be esti-
mated by simple linear regression. See [16] for more de-
tail, and [34] for further examples.

The EM algorithm then copes with XN being un-
available by forming an approximation Q(θ, θk) of
Lθ(XN , YN ). The approximation used, is the minimum
variance estimate of Lθ(XN , YN ) given the observed
available data YN , and an assumption θk of the true
parameter value. This minimum variance estimate is
given by the conditional mean [2]

Q(θ, θk) , Eθk
{Lθ(XN , YN ) | YN} (15a)

=
∫
Lθ(XN , YN )pθk

(XN |YN ) dXN . (15b)

The utility of this approach depends on the relation-
ship between Lθ(YN ) and the approximation Q(θ, θk) of
Lθ(XN , YN ). This may be examined by using the defi-
nition of conditional probability to write

log pθ(XN , YN ) = log pθ(XN | YN ) + log pθ(YN ). (16)

Taking the conditional mean Eθk
{· | YN} of both sides

then yields

Q(θ, θk) = Lθ(YN ) +
∫

log pθ(XN |YN )pθk
(XN |YN ) dXN .

(17)

Therefore

Lθ(YN )− Lθk
(YN ) = Q(θ, θk)−Q(θk, θk)

+
∫

log
pθk

(XN |YN )
pθ(XN |YN )

pθk
(XN |YN ) dXN . (18)

The rightmost integral in (18) is the Kullback-Leibler
divergence metric which is non-negative. This follows
directly upon noting that since for x ≥ 0,− log x ≥ 1−x

−
∫

log
pθ(XN |YN )
pθk

(XN |YN )
pθk

(XN |YN ) dXN ≥∫ (
1− pθ(XN |YN )

pθk
(XN |YN )

)
pθk

(XN |YN ) dXN = 0, (19)

where the equality to zero is due to the fact that pθ(XN |
YN ) is of unit area for any value of θ. As a consequence
of this simple fact

Lθ(YN )− Lθk
(YN ) ≥ Q(θ, θk)−Q(θk, θk). (20)

This delivers the key to the EM algorithm. Namely,
choosing θ so that Q(θ, θk) > Q(θk, θk) implies that
the log likelihood is also increased in that Lθ(YN ) >
Lθk

(YN ). The EM algorithm exploits this to deliver a

sequence of values θk, k = 1, 2, · · · designed to be in-
creasingly good approximations of the ML estimate (6)
via the following strategy.

Algorithm 1 (EM Algorithm)

(1) Set k = 0 and initialise θk such that Lθk
(YN ) is

finite;
(2) (Expectation (E) Step):

Calculate: Q(θ, θk); (21)

(3) (Maximisation (M) Step):

Compute: θk+1 = arg max
θ∈Θ

Q(θ, θk); (22)

(4) If not converged, update k 7→ k + 1 and return to
step 2.

The termination decision in step 4 is performed using a
standard criterion such as the relative increase ofLθ(YN )
or the relative increase of Q(θ, θk) falling below a pre-
defined threshold [9].

The first challenge in implementing the EM algorithm is
the computation of Q(θ, θk) according to the definition
(15a). To address this, note that via Bayes’ rule and the
Markov property associated with the model structure (1)

Lθ(XN , YN ) = log pθ(YN |XN ) + log pθ(XN )

= log pθ(x1) +
N−1∑
t=1

log pθ(xt+1|xt) +
N∑

t=1

log pθ(yt|xt).

(23)

When the model structure (1) is linear and the stochastic
components vt and et are Gaussian the log pθ terms are
either linear or quadratic functions of the state xt. Tak-
ing the conditional expectation (15a) in order to com-
puteQ(θ, θk) is then simply achieved by invoking a mod-
ification of a standard Kalman smoother [16, 24].

In the more general setting of this paper, the situation is
more complicated and requires an alternative approach.
To develop it, application of the conditional expectation
operator Eθk

{· | YN} to both sides of (23) yields

Q(θ, θk) = I1 + I2 + I3, (24)
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where

I1 =
∫

log pθ(x1)pθk
(x1|YN ) dx1, (25a)

I2 =
N−1∑
t=1

∫ ∫
log pθ(xt+1|xt)pθk

(xt+1, xt|YN ) dxt dxt+1,

(25b)

I3 =
N∑

t=1

∫
log pθ(yt|xt)pθk

(xt|YN ) dxt. (25c)

ComputingQ(θ, θk) therefore requires knowledge of den-
sities such as pθk

(xt|YN ) and pθk
(xt+1, xt|YN ) associated

with a nonlinear smoothing problem. Additionally, inte-
grals with respect to these must be evaluated. Outside
the linear case, there is no hope of any analytical solu-
tion to these challenges. This paper therefore takes the
approach of evaluating (25a)-(25c) numerically.

5 Computing State Estimates

The quantities I1, I2, I3 in (25) that determine Q(θ, θk)
depend primarily on evaluating the smoothed density
pθk

(xt | YN ) and expectations with respect to it.

To perform these computations, this paper employs se-
quential importance resampling (SIR) methods. These
are often discussed under the informal title of “particle
filters”, and the main ideas underlying them date back
half a century [35, 36]. However, it was not until 1993
that the first working particle filter was discovered by
[21]. As will be detailed, this approach first requires deal-
ing with the filtered density pθ(xt | Yt), and hence the
discussion will begin by examining this.

5.1 Particle Filtering

The essential idea is to evaluate integrals by a ran-
domised approach that employs the strong law of large
numbers (SLLN). For example, if it is possible to build
a random number generator that delivers (suitably un-
correlated) realisations {xi} with respect to a given
target probability density π(x), then by the SLLN, for
a given (measurable) function g

1
M

M∑
i=1

g(xi) ≈ E {g(x)} =
∫
g(x)π(x) dx, (26)

with equality (with probability one) in the limit asM →
∞.

Certainly, for some special cases such as the Gaussian
density, random number generator constructions are well
known. Denote by q(x) the density for which such a
random variable generator is available, and denote by
x̃i ∼ q(x̃) a realisation drawn using this generator.

A realisation xj ∼ π(x) that is distributed according
to the target density π(x) is then achieved by choos-
ing the j’th realisation xj to be equal to the value x̃i

with a certain probability w(x̃i). More specifically, for
j = 1, . . . ,M , a realisation xj is selected as x̃i randomly
according to

P(xj = x̃i) =
1
κ
w(x̃i) (27)

where

w(x̃i) =
π(x̃i)
q(x̃i)

, κ =
M∑
i=1

w(x̃i). (28)

This step is known as “resampling”, and the random as-
signment is done in an independent fashion. The assign-
ment rule (27) works, since by the independence, the
probability that as a result xj takes on the value x̃i is the
probability q(x̃i) that x̃i was realised, times the proba-
bility w(x̃i) that xj is then assigned this value. Hence,
with x̃i viewed as a continuous variable, rather than one
from a discrete set {x̃1, · · · , x̃M}

P(xj = x̃i) ∝ q(x̃i)
π(x̃i)
q(x̃i)

= π(x̃i), (29)

so that xj is a realisation from the required density π(x).

The challenge in achieving this is clearly the specification
of a density q(x) from which it is both feasible to generate
realisations {x̃i}, and for which the ratio w(x) in (28)
can be computed. To address this, consider the following
selections:

π(xt) = pθ(xt | Yt), q(x̃t) = pθ(x̃t | xt−1). (30)

This choice of proposal density q is feasible since a re-
alisation x̃i

t ∼ pθ(x̃t | xt−1) may be obtained by simply
generating a realisation vi

t ∼ pv, and substituting it, a
given xt−1, a measured ut and model-implied θ into ft

in (1a) in order to deliver a realisation x̃i
t.

Furthermore, if xt−1 used in (30) is a realisation dis-
tributed as xt−1 ∼ pθ(xt−1 | Yt−1) then the uncondi-
tional proposal density q is given by the law of total
probability as

q(x̃t) =
∫
pθ(x̃t | xt−1) pθ(xt−1 | Yt−1) dxt−1 (31)

and hence by the time update equation (12)

q(x̃t) = pθ(x̃t | Yt−1). (32)

As a result, the ratio w = π/q implied by the choice (30)
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can be expressed as

w(x̃i
t) =

pθ(x̃i
t | Yt)

q(x̃i
t)

=
pθ(x̃i

t | Yt)
pθ(x̃i

t | Yt−1)
=

pθ(yt | x̃i
t)

pθ(yt | Yt−1)
(33)

where the measurement update equation (11) is used in
progressing to the last equality.

According to the model (1), the numerator in this expres-
sion is simply the pdf of gt(xt, ut, et, θ) for given x̃i

t, ut, θ
and hence computable. Additionally, the denominator
in (33) is independent of x̃i

t, and hence simply a normal-
ising constant to ensure unit total probability so that

w(x̃i
t) =

1
κ
pθ(yt | x̃i

t), κ =
M∑
i=1

pθ(yt | x̃i
t). (34)

This analysis suggests a recursive technique of taking re-
alisations xi

t−1 ∼ pθ(xt−1 | Yt−1), using them to gener-
ate candidate x̃i

t via the proposal (30), and then resam-
pling them using the density (34) to deliver realisations
xi

t ∼ pθ(xt | Yt). Such an approach is known as sequen-
tial importance resampling (SIR) or, more informally,
the realisations {xj

t}, {x̃i
t} are known as particles, and

the method is known as particle filtering.

Algorithm 2 Basic Particle Filter

(1) Initialize particles, {xi
0}M

i=1 ∼ pθ(x0) and set t = 1;
(2) Predict the particles by drawing M i.i.d. samples

according to

x̃i
t ∼ pθ(x̃t|xi

t−1), i = 1, . . . ,M. (35)

(3) Compute the importance weights {wi
t}M

i=1,

wi
t , w(x̃i

t) =
pθ(yt|x̃i

t)∑M
j=1 pθ(yt|x̃j

t )
, i = 1, . . . ,M.

(36)

(4) For each j = 1, . . . ,M draw a new particle xj
t with

replacement (resample) according to,

P(xj
t = x̃i

t) = wi
t, i = 1, . . . ,M. (37)

(5) If t < N increment t 7→ t+ 1 and return to step 2,
otherwise terminate.

It is important to note that a key feature of the re-
sampling step (37) is that it takes an independent se-
quence {x̃i

t} and delivers a dependent one {xi
t}. Unfor-

tunately, this will degrade the accuracy of approxima-
tions such as (26), since by the fundamental theory un-
derpinning the SLLN, the rate of convergence of the
sum to the integral decreases as the correlation in {xi

t}
increases [38]. To address this, note that the proposal

values {x̃i
t} are by construction independent, but dis-

tributed as x̃i
t ∼ pθ(x̃t | Yt−1). Using them, and again

appealing to the law of large numbers

1
M

M∑
i=1

g(x̃i
t)w(x̃i

t) ≈
∫
g(x̃t)w(x̃t)pθ(x̃t | Yt−1) dx̃t

(38a)

=
∫
g(x̃t)

pθ(x̃t | Yt)
pθ(x̃t | Yt−1)

pθ(x̃t | Yt−1) dx̃t (38b)

=
∫
g(x̃t)pθ(x̃t | Yt) dx̃t = Eθ{g(x̃t) | Yt} (38c)

where the transition from (38a) to (38b) follows by (33).
Note that the expectation in (38c) is identical to that
in (26) with π(xt) = pθ(xt | Yt). However, since the
sum in (38a) involves independent {x̃i

t} rather than the
dependent {xi

t} used in (26), it will generally be a more
accurate approximation to the expectation.

As a result it is preferable to use the left hand side of
(38a) rather than the right hand side of (26). The former,
due to use of the “weights” {w(x̃i

t)} is an example of what
is known as “importance sampling” [42]. This explains
the middle term in the SIR name given to Algorithm 2.

Of course, this suggests that the resampling step (37) is
not essential, and one could simplify Algorithm 2 by re-
moving it and simply propagating the weights {wi

t} for
a set of particles {xi

t} whose positions are fixed. Unfor-
tunately this extreme does not work over time since the
resampling is critical to being able to track movements
in the target density pθ(xt | Yt).

Recognising that while resampling is necessary, it need
not be done at each time step t, and recognising the pos-
sibility for alternatives to the choice (32) for the proposal
density have lead to a range of different particle filtering
methods [10]. All deliver values {wi

t}, {x̃i
t}, {xi

t} such
that arbitrary integrals with respect to a target density
pθ(xt | Yt) can be approximately computed via sums
such as (26) and (38a).

A mathematical abstraction, which is a useful way of
encapsulating this deliverable, is the discrete Dirac delta
approximation of pθ(xt | Yt) given by

pθ(xt | Yt) ≈ p̂θ(xt | Yt) =
M∑
i=1

wi
tδ(xt − x̃i

t). (39)

Underlying this abstraction is the understanding that
substituting p̂θ for pθ delivers finite sum approximations
to integrals involving pθ.

5.2 Particle Smoother

The stochastic sampling approach for computing expec-
tations with respect to the filtered density pθ(xt | Yt)
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can be extended to accommodate the smoothed density
pθ(xt | YN ). The same abstraction just introduced of

pθ(xt | YN ) ≈ p̂θ(xt | YN ) =
M∑
i=1

wi
t|Nδ(xt − x̃i

t) (40)

will be used to encapsulate the resulting importance
sampling approximations. To achieve this, note that us-
ing the definition of conditional probability several times

pθ(xt | xt+1, YN ) = pθ(xt | xt+1, Yt, Yt+1:N ), (41a)

=
pθ(xt, xt+1, Yt, Yt+1:N )
pθ(xt+1, Yt, Yt+1:N )

(41b)

=
pθ(Yt+1:N | xt, xt+1, Yt)pθ(xt, xt+1, Yt)

pθ(xt+1, Yt, Yt+1:N )
(41c)

=
pθ(Yt+1:N | xt, xt+1, Yt)pθ(xt | xt+1, Yt)pθ(xt+1, Yt)

pθ(xt+1, Yt, Yt+1:N )
(41d)

=
pθ(Yt+1:N | xt, xt+1, Yt)pθ(xt | xt+1, Yt)

pθ(Yt+1:N | xt+1, Yt)
(41e)

=pθ(xt | xt+1, Yt), (41f)

where the last equality follows from the fact that given
xt+1, by the Markov property of the model (1) there is
no further information about Yt+1:N available in xt and
hence pθ(Yt+1:N | xt, xt+1, Yt) = pθ(Yt+1:N | xt+1, Yt).

Consequently, via the law of total probability and Bayes’
rule

pθ(xt | YN ) =
∫
pθ(xt | xt+1, Yt) pθ(xt+1 | YN ) dxt+1

(42a)

=
∫
pθ(xt+1 | xt)pθ(xt | Yt)

pθ(xt+1 | Yt)
pθ(xt+1 | YN ) dxt+1

(42b)

= pθ(xt | Yt)
∫
pθ(xt+1 | xt)pθ(xt+1 | YN )

pθ(xt+1 | Yt)
dxt+1.

(42c)

This expresses the smoothing density pθ(xt | YN ) in
terms of the filtered density pθ(xt | Yt) times an xt de-
pendent integral. To compute this integral, note first
that again by the law of total probability, the denomi-
nator of the integrand can be written as

pθ(xt+1 | Yt) =
∫
pθ(xt+1 | xt) pθ(xt | Yt) dxt. (43)

As explained in the previous section, the particle filter
(39) may be used to compute this via importance sam-
pling according to

pθ(xt+1 | Yt) ≈
M∑
i=1

wi
t pθ(xt+1 | x̃i

t). (44)

To complete the integral computation, note that for the
particular case of t = N , the smoothing density and the
filtering density are the same, and hence the weights in
(40) may be initialised as wi

N |N = wi
N and likewise the

particles x̃i
N are identical. Working backwards in time t

then, we assume an importance sampling approximation
(40) is available at time t + 1, and use it and (44) to
compute the integral in (42c) as∫

pθ(xt+1 | xt)pθ(xt+1 | YN )
pθ(xt+1 | Yt)

dxt+1 ≈

M∑
k=1

wk
t+1|N pθ(x̃k

t+1 | xt)∑M
i=1 w

i
t pθ(x̃k

t+1 | x̃i
t)
. (45a)

The remaining pθ(xt | Yt) term in (42c) may be repre-
sented by the particle filter (39) so that the smoothed
density pθ(xt | YN ) is represented by

pθ(xt | YN ) ≈ p̂θ(xt | YN ) =
M∑
i=1

wi
t|Nδ(xt − x̃i

t), (46a)

wi
t|N = wi

t

M∑
k=1

wk
t+1|N

pθ(x̃k
t+1|x̃i

t)
vk

t

, (46b)

vk
t ,

M∑
i=1

wi
tpθ(x̃k

t+1|x̃i
t). (46c)

These developments can be summarised by the following
particle smoothing algorithm.

Algorithm 3 Basic Particle Smoother

(1) Run the particle filter (Algorithm 2) and store
the predicted particles {x̃i

t}M
i=1 and their weights

{wi
t}M

i=1, for t = 1, . . . , N .
(2) Initialise the smoothed weights to be the terminal

filtered weights {wi
t} at time t = N ,

wi
N |N = wi

N , i = 1, . . . ,M. (47)

and set t = N − 1.
(3) Compute the smoothed weights {wi

t|N}
M
i=1 using the

filtered weights {wi
t}M

i=1 and particles {x̃i
t, x̃

i
t+1}M

i=1

via the formulae (46b), (46c).
(4) Update t 7→ t−1. If t > 0 return to step 3, otherwise

terminate.

Like the particle filter Algorithm 2, this particle
smoother is not new [11]. Its derivation is presented
here so that the reader can fully appreciate the ratio-
nale and approximating steps that underly it. This is
important since they are key aspects underlying the
novel estimation methods derived here.

Note also that there are alternatives to this algorithm for
providing stochastic sampling approximations to func-
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tions of the smoothed state densities [6, 7, 14, 18, 39].
The new estimation methods developed in this paper
are compatible with any method the user chooses to em-
ploy, provided it is compatible with the approximation
format embodied by (40). The results presented in this
paper used the method just presented as Algorithm 3.

6 The E Step: Computing Q(θ, θk)

These importance sampling approaches will now be em-
ployed in order to compute approximations to the terms
I1, I2 and I3 in (25) that determine Q(θ, θk) via (24).
Beginning with I1 and I3, the particle smoother repre-
sentation (46) achieved by Algorithm 3 directly provides
the importance sampling approximations

I1 ≈Î1 ,
M∑
i=1

wi
1|N log pθ(x̃i

1), (48a)

I3 ≈Î3 ,
N∑

t=1

M∑
i=1

wi
t|N log pθ(yt|x̃i

t). (48b)

A vital point is that when forming these approximations,
the weights {wi

t|N} are computed by Algorithms 2 and 3
run with respect to the model structure (1), (2) param-
eterised by θk.

Evaluating I2 given by (25b) is less straightforward, due
to it depending on the joint density pθ(xt+1, xt|YN ).
Nevertheless, using the particle filtering representation
(39) together with the smoothing representation (46a)
leads to the following importance sampling approxima-
tion.

Lemma 6.1 The quantity I2 defined in (25b) may be
computed by an importance sampling approximation Î2
based on the particle filtering and smoothing representa-
tions (39), (44) that is given by

I2 ≈ Î2 ,
N−1∑
t=1

M∑
i=1

M∑
j=1

wij
t|N log pθ(x̃

j
t+1 | x̃i

t), (49)

where the weights wij
t|N are given by

wij
t|N =

wi
tw

j
t+1|Npθk

(x̃j
t+1 | x̃i

t)∑M
l=1 w

l
tpθk

(x̃j
t+1 | x̃l

t)
. (50)

PROOF. First, by the definition of conditional proba-
bility

pθ(xt+1, xt|YN ) = pθ(xt|xt+1, YN )pθ(xt+1|YN ). (51)

Furthermore, by (41a)-(41f)

pθ(xt|xt+1, YN ) = pθ(xt|xt+1, Yt). (52)

Substituting (52) into (51) and using Bayes’ rule in con-
junction with the Markov property of the model (1) de-
livers

pθ(xt+1,xt|YN ) = pθ(xt|xt+1, Yt)pθ(xt+1|YN ) (53a)

=
pθ(xt+1|xt) pθ(xt|Yt)

pθ(xt+1|Yt)
pθ(xt+1|YN ). (53b)

Therefore, the particle filter and smoother representa-
tions (39), (46a) may be used to deliver an importance
sampling approximation to I2 according to∫ ∫

log pθ(xt+1|xt)pθk
(xt+1, xt|YN ) dxt dxt+1 =∫

pθk
(xt+1|YN )

pθk
(xt+1|Yt)

[∫
log pθ(xt+1|xt)pθk

(xt+1|xt)×

pθk
(xt|Yt) dxt

]
dxt+1 ≈

M∑
i=1

wi
t

∫
pθk

(xt+1|YN )
pθk

(xt+1|Yt)
log pθ(xt+1|x̃i

t)pθk
(xt+1|x̃i

t) dxt+1

≈
M∑
i=1

M∑
j=1

wi
tw

j
t+1|N

pθk
(x̃j

t+1 | x̃i
t)

pθk
(x̃j

t+1|Yt)
log pθ(x̃

j
t+1|x̃i

t).

Finally, the law of total probability in combination with
the particle filter (39) provides an importance sampling
approximation to the denominator term given by

pθk
(x̃j

t+1|Yt) =
∫
pθk

(x̃j
t+1|xt)pθk

(xt|Yt) dxt (54a)

≈
M∑
l=1

wl
tpθk

(x̃j
t+1 | x̃l

t). (54b)

�

Again, all weights and particles in this approximation
are computed by Algorithms 2 and 3 run with respect
to the model structure (1), (2) parametrised by θk.

Using these importance sampling approaches, the func-
tion Q(θ, θk) given by (24), (25) may be approximately
computed as Q̂M (θ, θk) defined by

Q̂M (θ, θk) = Î1 + Î2 + Î3, (55)

where Î1, Î2 and Î3 are given by (48a), (49) and (48b),
respectively. Furthermore, the quality of this approxi-
mation can be made arbitrarily good as the number M
of particles is increased.
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7 The M Step: Maximisation of Q̂M (θ, θk)

With an approximation Q̂M (θ, θk) of the function
Q(θ, θk) required in the E step (21) of the EM Algo-
rithm 1 available, attention now turns to the M step
(22). This requires that the approximation Q̂M (θ, θk) is
maximised with respect to θ in order to compute a new
iterate θk+1 of the maximum likelihood estimate.

In certain cases, such as when the nonlinearities ft and
ht in the model structure (1) are linear in the parame-
ter vector θ, it is possible to maximise Q̂M (θ, θk) using
closed-form expressions. An example of this will be dis-
cussed in Section 10.

In general however, a closed form maximiser will not
be available. In these situations, this paper proposes a
gradient based search technique. For this purpose, note
that via (55), (48) and (49) the gradient of Q̂(θ, θk) with
respect to θ is simply computable via

∂

∂θ
Q̂M (θ, θk) =

∂Î1
∂θ

+
∂Î2
∂θ

+
∂Î3
∂θ

, (56a)

∂Î1
∂θ

=
M∑
i=1

wi
1|N

∂ log pθ(x̃i
1)

∂θ
, (56b)

∂Î2
∂θ

=
N−1∑
t=1

M∑
i=1

M∑
j=1

wij
t|N

∂ log pθ(x̃
j
t+1|x̃i

t)
∂θ

,

(56c)

∂Î3
∂θ

=
N∑

t=1

M∑
i=1

wi
t|N

∂ log pθ(yt|x̃i
t)

∂θ
. (56d)

With this gradient available, there are a wide variety of
algorithms that can be employed to develop a sequence
of iterates θ = β0, β1, · · · that terminate at a value β∗
which seeks to maximise Q̂M (θ, θk).

A common theme in these approaches is that after ini-
tialisation with β0 = θk, the iterations are updated ac-
cording to

βj+1 = βj+αjpj , pj = Hjgj , gj =
∂

∂θ
Q̂M (θ, θk)

∣∣∣∣
θ=βj

(57)
Here Hj is a positive definite matrix that is used to de-
liver a search direction pj by modifying the gradient di-
rection. The scalar term αj is a step length that is cho-
sen to ensure that Q̂M (βj +αjpj , θk) ≥ Q̂M (βj , θk). The
search typically terminates when incremental increases
in Q̂M (β, θk) fall below a user specified tolerance. Com-
monly this is judged via the gradient itself according to
a test such as |pT

j gj | ≤ ε for some user specified ε > 0.

In relation to this, it is important to appreciate that it
is in fact not necessary to find a global maximiser of

Q̂(θ, θk). All that is necessary is to find a value θk+1 for
which Q(θk+1, θk) > Q(θk, θk) since via (20) this will
guarantee that L(θk+1) > L(θk). Hence, the resulting
iteration θk+1 will be a better approximation than θk of
the maximum likelihood estimate (8).

8 Final Identification Algorithm

The developments of the previous sections are now sum-
marised in a formal definition of the EM-based algorithm
this paper has derived for nonlinear system identifica-
tion.

Algorithm 4 (Particle EM Algorithm)

(1) Set k = 0 and initialise θk such that Lθk
(Y ) is finite;

(2) (Expectation (E) Step):
(a) Run Algorithms 2 and 3 in order to obtain the

particle filter (39) and particle smoother (46a)
representations.

(b) Use this information together with (48a), (48b)
and (49) to

Calculate: Q̂M (θ, θk) = Î1+ Î2+ Î3. (58)

(3) (Maximisation (M) Step):

Compute: θk+1 = arg max
θ∈Θ

Q̂M (θ, θk) (59)

explicitly if possible, otherwise according to (57).
(4) Check the non-termination condition Q(θk+1, θk)−

Q(θk, θk) > ε for some user chosen ε > 0. If satisfied
update k 7→ k + 1 and return to step 2, otherwise
terminate.

It is worth emphasising a point made earlier, that while
the authors have found the simple particle and smooth-
ing Algorithms 2 and 3 to be effective, the user is free
to substitute alternatives if desired, provided the results
they offer are compatible with the representations (39),
(46a).

It is natural to question the computational requirements
of this proposed algorithm. Some specific comments re-
lating to this will be made in the example section fol-
lowing. More generally, it is possible to identify the com-
putation of Î2 given by (49) and its gradient (56c) as a
dominating component of both the E and M steps. As is
evident, it requires O(NM2) floating point operations.

This indicates that the computing load is sensitive to
the numberM of particles employed. Balancing this, the
experience of the authors has been that useful results
can be achieved without requiringM to be prohibitively
large. The following simulation section will provide an
example illustrating this point with M = 100, and 1000
iterations of Algorithm 4 requiring approximately one
minute of processor time on a standard desktop comput-
ing platform.
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9 Convergence

It is natural to question the convergence properties of
this iterative parameter estimation procedure. These
will derive from the general EM algorithm 1 on which it
is based, for which the most fundamental convergence
property is as follows.

If the EM algorithm terminates at a point θk+1 because
it is a stationary point of Q(θ, θk), then it is also a sta-
tionary point of the log likelihood L(θ). Otherwise, the
likelihood is increased in progressing from θk to θk+1.

Lemma 9.1 Let θk+1 be generated from θk by an itera-
tion of the EM Algorithm (21),(22). Then

L(θk+1) ≥ L(θk) ∀k = 0, 1, 2, . . . , (60)

Furthermore, equality holds in this expression if and only
if both

Q(θk+1, θk) = Q(θk, θk), (61)

and
pθk+1(XN | YN ) = pθk

(XN | YN ), (62)

hold for almost all (with respect to Lebesgue measure)
XN .

PROOF. See Theorem 5.1 in [16]. �

An important point is that the proof of this result
only depends on Q(θk+1, θk) ≥ Q(θk, θk) being non-
decreasing at each iteration. It does not require that
θk+1 be a maximiser of Q(θ, θk).

This provides an important theoretical underpinning for
the EM method foundation of Algorithm 4 developed
here. Its application is complicated by the fact that
only an approximation Q̂M (θ, θk) ofQ(θ, θk) is available.
However, this approximation is arbitrarily accurate for
a sufficiently large number M of particles.

Lemma 9.2 Consider the function Q(θ, θk) defined by
(24)-(25c) and its SIR approximation Q̂M (θ, θk) defined
by (48a)-(49) and (55) which is based on M particles.
Suppose that

pθ(yt | xt) <∞, pθ(xt+1 | xt) <∞, (63)

E
{
|Q(θ, θk)|4 | YN

}
<∞, (64)

hold for all θ, θk ∈ Θ. Then with probability one

lim
M→∞

Q̂M (θ, θk) = Q(θ, θk), ∀θ, θk ∈ Θ. (65)

PROOF. By application of Corollary 6.1 in [23]. �

Together, Lemmas 9.1 and 9.2, do not establish conver-
gence of Algorithm 4, and are not meant to imply it.

Indeed, one drawback of the EM algorithm is that ex-
cept under restrictive assumptions (such as convex like-
lihood), it is not possible to establish convergence of the
iterates {θk}, even when exact computation of the E-
step is possible [34, 49].

The point of Lemma 9.1 is to establish that any algorith-
mic test that Q(θ, θk) has not decreased (such as step
(4) of Algorithm 4) guarantees a non-decrease of L(θ).
Hence EM is capable of matching the guaranteed non
cost-decreasing property of gradient based search.

Of course, this depends on the accuracy with which
Q(θ, θk) can be calculated. The point of Lemma 9.2 is to
establish that the particle-based approximant Q̂M (θ, θk)
used in this paper is an arbitrarily accurate approxima-
tion ofQ(θ, θk). Hence Lemma 9.2 establishes a scientific
basis for employing Q̂M (θ, θk).

10 Numerical Illustrations

In this section the utility and performance of the new
Algorithm 4 is demonstrated on two simulation exam-
ples. The first is a linear time-invariant Gaussian system.
This is profiled since an exact solution for the expecta-
tion step can be computed using the Kalman smoother
[16]. Comparing the results obtained by employing both
this, and the particle based approximations used in Al-
gorithm 4 therefore allow the effect of the particle ap-
proximation on estimation accuracy to be judged.

The performance of Algorithm 4 on a second example
involving a well studied and challenging nonlinear sys-
tem is then illustrated.

10.1 Linear Gaussian System

The first example to be considered is the following simple
linear time series

xt+1 = axt + vt

yt = cxt + et

[
vt

et

]
∼ N

([
0

0

]
,

[
q 0

0 r

])
(66a)

with the true parameters given by

θ? = [a?, c?, q?, r?] = [0.9, 0.5, 0.1, 0.01] . (66b)

The estimation problem is to determine just the θ = a
parameter on the basis of the observations YN . Using
EM methods it is straightforward to also estimate the
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c, q and r parameters as well [16]. However, this example
concentrates on a simpler case in order to focus atten-
tion on the effect of the particle filter/smoother approx-
imations employed in Algorithm 4.

More specifically, via Algorithm 4, a particle based ap-
proximation Q̂M (a, ak) can be expressed as

Q̂M (a, ak) = −γ(ak)a2 + 2ψ(ak)a+ d, (67)

where d is a constant term that is independent of a and
ψ(·) and γ(·) are defined as

ψ(ak) =
N−1∑
t=1

M∑
i=1

M∑
j=1

wij
t|N x̃

j
t+1x̃

i
t, (68a)

γ(ak) =
N∑

t=1

M∑
i=1

wi
t|N (x̃i

t)
2. (68b)

Since Q̂M (a, ak) in (67) is quadratic in a, it is straight-
forward to solve the M step in closed form as

ak+1 =
ψ(ak)
γ(ak)

. (69)

Furthermore, in this linear Gaussian situation Q(θ, θk)
can be computed exactly using a modified Kalman
smoother [16]. In this case, the exact Q(a, ak) is again
of the quadratic form (67) after straightforward re-
definitions of ψ and γ, so the “exact” M step also has
the closed form solution (69).

This “exact EM” solution can then be profiled versus
the new particle filter/smoother based EM method (67)-
(69) of this paper in order to assess the effect of the
approximations implied by the particle approach.

This comparison was made by conducting a Monte Carlo
study over 1000 different realisations of data YN with
N = 100. For each realisation, ML estimates â were
computed using the exact EM solution provided by [16],
and via the approximate EM method of Algorithm 4.
The latter was done for two cases of M = 10 and M =
500 particles. In all cases, the initial value a0 was set to
the true value a?.

The results are shown in Figure 1. There, for each of the
1000 realisations, a point is plotted with x co-ordinate
the likelihood value L(â) achieved by 100 iterations
of the exact EM method, and y co-ordinate the value
achieved by 100 iterations of Algorithm 4.

Clearly, if both approaches produced the same estimate,
all the points plotted in this manner should lie on the
solid y = x line shown in Figure 1. For the case of M =
500 particles, where the points are plotted with a cross
‘x’, this is very close to being the case. This illustrates

that with sufficient number of particles, the use of the
approximation Q̂M in Algorithm 4 can have negligible
detrimental effect on the final estimate produced.

Also plotted in Figure 1 using an ‘o’ symbol, are the
results obtained using only M = 10 particles. Despite
this being what could be considered a very small num-
ber of particles, there is still generally reasonable, and
often good agreement between the associated approxi-
mate and exact estimation results.
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Fig. 1. Comparison of the likelihood values for the final es-
timates after 100 iterations of the exact EM method and the
particle EM method given in Algorithm 4 using both M = 10
and M = 500 particles.

10.2 A Nonlinear and Non-Gaussian System

A more challenging situation is now considered that in-
volves the following nonlinear and time-varying system

xt+1 = axt + b
xt

1 + x2
t

+ c cos(1.2t) + vt, (70a)

yt = dx2
t + et, (70b)[

vt

et

]
∼ N

([
0

0

]
,

[
q 0

0 r

])
(70c)

where the true parameters in this case are

θ? = [a?, b?, c?, d?, q?, r?] = [0.5, 25, 8, 0.05, 0, 0.1] .
(71)

This has been chosen due to it being acknowledged as a
challenging estimation problem in several previous stud-
ies in the area [11, 18, 21].

To test the effectiveness of Algorithm 4 in this situation,
a Monte Carlo study was again performed using 104 dif-
ferent data realisations YN of length N = 100. For each
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of these cases, an estimate θ̂ was computed using 1000
iterations of Algorithm 4 with initialisation θ0 being cho-
sen randomly, but such that each entry of θ0 lay in an
interval equal to 50% of the corresponding entry in the
true parameter vector θ?. In all cases M = 100 particles
were used.

Using these choices, each computation of θ̂ using Algo-
rithm 4 took 58 seconds to complete on a 3 GHz quad-
core Xeon running Mac OS 10.5.

The results of this Monte Carlo examination are pro-
vided in Table 1, where the rightmost column gives
the sample mean of the parameter estimate across the
Monte Carlo trials plus/minus the sample standard de-
viation. Note that 8 of the 104 trials were not included
Table 1
True and estimated parameter values for (70); mean value
and standard deviations are shown for the estimates based on
104 Monte Carlo runs.

Parameter True Estimated

a 0.5 0.50± 0.0019

b 25.0 25.0± 0.99

c 8.0 7.99± 0.13

d 0.05 0.05± 0.0026

q 0 7.78× 10−5 ± 7.6× 10−5

r 0.1 0.106± 0.015

in these calculations due to capture in local minima,
which was defined according to the relative error test
|(θ̂i − θ?

i )/θ?
i )| > 0.1 for any i’th component. Consid-

ering the random initialisation, this small number of
required censoring and the results in Table 1 are con-
sidered successful results.

It is instructive to further examine the nature of both
this estimation problem and the EM-based solution. For
this purpose consider the situation where only the b
and q parameters are to be estimated. In this case, the
log-likelihood Lθ(Y ) as a function of b with q = q? =
0 is shown as the solid line in Figure 2. Clearly the
log-likelihood exhibits quite erratic behaviour with very
many local maxima. These could reasonably be expected
to create significant difficulties for iterative search meth-
ods, such as gradient based search schemes for maximis-
ing Lθ(Y ).

However, in this simplified case, the EM-based method
of this paper seems quite robust against capture in these
local maxima. For example, the trajectory of the param-
eter estimates over 100 iterations of Algorithm 4 and
over 100 different length N = 100 data realisations, and
100 random initialisations for the b parameter, with the
q parameter initialised at q = 0.001 are shown in Fig-
ure 3. Here, M = 50 particles were employed, and in all
cases, an effective estimate of the true parameter value
b = 25 was obtained.
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Fig. 2. The true log-likelihood function is shown as a func-
tion of the b parameter. Superimposed onto this plot are three
instances of the Q(θ, θk) function, defined in (15a). Clearly,
as the EM algorithm evolves, then locally around the global
maximiser, the approximation Q(θ, θk) resembles the log-like-
lihood Lθ(Y ) more closely.
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Fig. 3. Top: parameter b estimates as a function of iteration
number (horizontal line indicates the true parameter value at
b = 25). Bottom: log10(q) parameter estimates as a function
of iteration number.

The means whereby the EM-based Algorithm 4 achieves
this are illustrated by profiling the function Q(θ, θk) ini-
tialised at [b0, q0] = [40, 0.001] for k = 1, 10 and 100 as
the dotted, dash-dotted and dashed lines, respectively.
Clearly, in each case theQ(θ, θk) function is a much more
straightforward maximisation problem than that of the
log likelihood Lθ(Y ). Furthermore, by virtue of the es-
sential property (20), at each iteration directions of in-
creasing Q(θ, θk) can be seen to coincide with directions
of increasing Lθ(Y ). As a result, difficulties associated
with the local maxima of Lθ(Y ) are avoided.

12



To study this further, the trajectory of EM-based esti-
mates θk = [bk, qk]T for this example are plotted in rela-
tion to the two dimensional log-likelihood surface Lθ(Y )
in Figure 4. Clearly, the iterates have taken a path cir-
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Fig. 4. The log-likelihood is here plotted as a function of the
two parameters b and q. Overlaying this are the parameter
estimates θk = [bk, qk]T produced by Algorithm 4.

cumventing the highly irregular “slice” at q = 0 illus-
trated in Figure 2. As a result, the bulk of them lie in
much better behaved regions of the likelihood surface.

This type of behaviour with associated robustness to get
captured in local minima is widely recognised and asso-
ciated with the EM algorithm in the statistics literature
[34]. Within this literature, there are broad explanations
for this advantage, such as the fact that (20) implies that
Q(θ, θk) forms a global approximation to the log likeli-
hood Lθ(Y ) as opposed to the local approximations that
are implicit to gradient based search schemes. However,
a detailed understanding of this phenomenon is an im-
portant open research question deserving further study.

A further intriguing feature of the EM-algorithm is that
while (20) implies that local maxima of Lθ(Y ) may be
fixed points of the algorithm, there may be further fixed
points. For example, in the situation just studied where
the true q? = 0, if the EM-algorithm is initialised with
q0 = 0, then all iterations θk will be equal to θ0, regard-
less of what the other entries in θ0 are.

This occurs because with vt = 0 in (1a), the smooth-
ing step delivers state estimates completely consistent
with θ0 (a deterministic simulation arises in the sam-
pling (2a)), and hence the maximisation step then de-
livers back re-estimates that reflect this, and hence are
unchanged. While this is easily avoided by always initial-
ising q0 as non-zero, a full understanding of this aspect
and the question of further fixed points are also worthy
of further study.

11 Conclusion

The contribution in this paper is a novel algorithm for
identifying the unknown parameters in general stochas-
tic nonlinear state-space models. To formulate the
problem a maximum likelihood criterion was employed,
mainly due to the general statistical efficiency of such an
approach. This problem is then solved using the expec-
tation maximisation algorithm, which in turn required
a nonlinear smoothing problem to be solved. This was
handled using a particle smoothing algorithm. Finally,
the utility and performance of the new algorithm was
demonstrated using two simulation examples.
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