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This talk is a nutshell

1 A method to control slowly varying Wiener systems
by PID without oscillations

2 Particle filter is the best way of estimating Wiener
models of drug administration.

4 / 39 alexander.medvedev@it.uu.se

mailto:alexander.medvedev@it.uu.se


This talk is a nutshell

1 A method to control slowly varying Wiener systems
by PID without oscillations

2 Particle filter is the best way of estimating Wiener
models of drug administration.

4 / 39 alexander.medvedev@it.uu.se

mailto:alexander.medvedev@it.uu.se


Closed-loop drug delivery

Automatic dosing of the drug by a feedback controller from
quantified symptoms:

I Individualization of treatment

I Intrinsic monitoring of the patient state

I Automation of tedious dose adjustment

I Suitable for remote operation

Prerequisites:

I Sensor (monitor) quantifying the symptoms

I Controller guaranteeing that the symptoms closely follow the
set point prescribed by medical personnel

I Drug dosing device (pump, dispenser, vaporizer, etc.)
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Anesthesia: Neuromuscular Blockade (NMB)

NMB	
  

clinical	
  setpoints	
  

anesthesiologist	
  
guidelines	
  

drugs	
  dynamics	
  
interac3ons	
  

muscle	
  relaxant	
  

EMG	
  

NMB – neuromuscular blockade; EMG – blockade level measured by electromyogram; muscle relaxant —
atracurium; reactive and predictive control of blockade level by anaesthesiologist
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Anesthesia: KMG NMB sensor

KMG NMB sensor: The electrical stimulation of the adductor pollicis muscle is performed via the two electrodes on

the wrist of the patient and the response is measured by the motion of the thumb. Unrelated with the NMB

measurement, there is a finger oximeter placed on the middle finger of the patient.
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Closed-loop Anesthesia: PID

NMB	
  

controller	
  setpoint	
  PID	
  

muscle	
  relaxant	
  

EMG	
  

NMB – neuromuscular blockade; EMG – blockade level measured by electromyogram; muscle relaxant —
atracurium; PID – proportional, intergal and derivative controller
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Closed-loop drug delivery

Challenges

I Difficulties in translating control performance into clinical
outcome

I High inter-patient and intra-patient variability

I High inter-patient variability: individualized controller
I High intra-patient variability: adaptivity

I Implementation of predictive action
I Oscillations: interchanging underdosing and overdosing

episodes

I Underdosing: insufficient drug effect
I Overdosing: risk of side effects
I Oscillation: both of the above
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Closed-loop drug delivery: PID-control of BIS

observed, in both cases the system remains stabilised
around the reference value with an oscillation of near^10
units in the worst case (patient 2).

The study revealed that although results are satisfac-
tory, eventually the performance of the controller can
decrease. There are two main factors that contribute to
this. First of all, the variability between patients implies
that the nominal PI parameters chosen are not the best
choice for all the patients.

Together with this, the dead time present in the system
also contributes to reduce the phase margin of the
closed-loop system. For example in Figure 6, the evolution
of the BIS is quite oscillatory. The next section proposes
a mechanism to reduce the negative effect of this
time-delay.

5. Smith predictor for dead-time compensation

As seen on previous section, the PI controller usually gives
a response with oscillations around the BIS reference
value. In this section, the control algorithm is modified in
order to compensate these oscillations and get a better
transitory. The results shown in this paper are obtained in
simulation. The patient model for use in simulation is
adjusted previously using real data.

To make the simulations experiments of the proposed
algorithm, a physiologic model of the patient dynamics
was designed. The results shown in this section are
obtained for patient 2. As mentioned, the model has two

parts: pharmacokinetics and pharmacodynamics. The
parameters defining each submodel were obtained in
simulation.

After converging to a satisfactory model for the
patient, the values obtained for the pharmacokinetics
model were k10 ¼ 0.006, k12 ¼ 11.0; k21 ¼ 14.04,
k13 ¼ 10.02, k31 ¼ 283.50 and ke0 ¼ 0.0063. The values
for the pharmacodynamics model were EC50 ¼ 610.0,
g ¼ 1.5, BIS0 ¼ 100 and BISmax ¼ 0. The procedure to
obtain these parameters was to adjust the parameters in
simulation in order to reproduce the behaviour of the
patient real data.

The validation of the model in this patient can be seen
in Figure 8(a). The modelled BIS (dashed lines) fits to the
real BIS (continuous line).

It is important to note that this model is used only for
simulation purposes. The reason to develop an ad hoc
model for this patient is to have a more accurate model to
test the controller in this patient. The controller designed
in this work is not based on this model. This means that for
real application in the operating theatre this model is not
used at all so the strategy proposed can be used in any
patient.

5.1 Predictor design

The proposal exposed in this work is to improve the
performance of the closed-loop system by means of a
compensation of the time-delay present in the system.

Figure 6. Results of anesthesia automatic control on patient 2.
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Oscillations in PID-controlled anesthesia. Appropriate BIS level for general anesthesia is from 40 to 60. From
Méndez et al, Computer Methods in Biomechanics and Biomedical Engineering Vol. 12, No. 6, December 2009,

pp. 727–734
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Closed-loop drug delivery

Avoiding oscillations

I How far is the closed loop from oscillation?

I How to design a controller that is farther from oscillation?

I If there is a risk for oscillations, how to safely move the
closed-loop system to better controller settings?

Zh. Zhusubaliyev, A. Medvedev, and M. Silva ”Bifurcation Analysis of

PID Controlled Neuromuscular Blockade in Closed-loop Anesthesia”,

Journal of Process Control, Volume 25, January 2015, Pages 152–163.

Zh. Zhusubaliyev, M. Silva, and A. Medvedev ”Automatic recovery from

nonlinear oscillations in PID-controlled anesthetic drug delivery”,

European Control Conference, Linz, Austria, July, 2015

Accurate pharmacodynamic-pharmacokinetic models are necessary.
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Mathematical modeling: The patient model

The system (PK/PD) is modeled by a Wiener model:
I The linear block is of third order, with the parameter α

ẋ1 = −αk3(x1 − u(t)), ẋ2 = αk2(x1 − x2),
ẋ3 = αk1(x2 − x3),

I The nonlinearity is a Hill function of order γ ∈ R+

y(t) =
100Cγ50

Cγ50 + xγ3(t)
.

I The patient model is parameterized in two parameters α, γ.
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Mathematical modeling: PID controller

PID controller with time-varying gain

u(t) = K(t)

(
e(t) +

1

Ti

∫
e(s) ds+ Td

de(t)

dt

)
,

with
K̇(t) = −ξ (K(t)−K∗) .

I e(t) = yr − y(t) is the control error

I yr is the reference to be followed.
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Mathematical modeling: closed-loop

The mathematical model of the closed-loop NMB

dx

dt
= f(x), (1)

x = (x1, x2, x3, x4, x5)
T ,

f(x) = (f1, f2, f3, f4, f5)
T ,

with
f1 = −αk3 x1 − α2 k1 k3 Td x5Φ

′(x3)(x2 − x3)

+ αk3 x5(yr − Φ(x3)) +
αk3
Ti

x4 x5,

f2 = αk2(x1 − x2), f3 = αk1(x2 − x3),
f4 = yr − Φ(x3), f5 = −ξ (x5 −K∗),

Φ′(x3) = − γxγ−13

100Cγ50
Φ2(x3).
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Analysis: equilibrium state

The closed-loop system has a single equilibrium state
x∗ = [x∗1, x

∗
2, x
∗
3, x
∗
4, x
∗
5]
T , where

x∗1 = x∗2 = x∗3, x∗4 =
Ti
K∗

x∗3,

x∗3 = C50

(
100

yr
− 1

) 1
γ

, x∗5 = K∗.

The local stability of x∗ is determined by the eigenvalues of

Df(x∗) =

[
∂fi
∂xj

]
16i65; 16j65

,

I Real part: the rate of growth in response to perturbation away
from the equilibrium point

I Imaginary part: the angular frequency of an oscillatory
component of the dynamics
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Analysis: distance to bifurcation

Andronov-Hopf bifurcation

The transition in which a pair of complex conjugated eigenvalues
simultaneously crosses the imaginary axis from the left to the right
complex half-plane.

The surface in the parameter space (Td, Ti,K∗, α, γ)

χ(Ti, Td,K∗, α, γ) = b23 − b1b2b3 + b21b4 = 0 (2)

defines the stability boundary of the equilibrium.

b1 = α(k1 + k2 + k3),

b2 = α2 (k1 k2 + k1 k3 + k2 k3)

+ α3 k1 k2 k3K∗ Td Φ′(x∗3),

b3 = α3 k1 k2 k3
[
1 +K∗Φ

′(x∗3)
]
,

b4 =
α3 k1 k2 k3K∗

Ti
Φ′(x∗3).

(3)
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Analysis: distance to bifurcation

(a) (b)

Figure: (a) Andronov-Hopf bifurcation boundary in the parameter space
(Ti, Td,K∗) for α = 0.0364 and γ = 4.24358: A is the equilibrium
stability domain, B is the region of unstable equilibrium. Point 1 belongs
to A. (b) Andronov-Hopf bifurcation boundary in the parameter space
(Ti, Td,K∗) for α = 0.021435 and γ = 4.24358. Now Point 1 is in B.
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Analysis: distance to bifurcation
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Figure: Histogram of the distance to bifurcation, at time t = 40 min,
over the 48 cases in the synthetic database, assuming PID control. Note
the log-scale on the x-axis. Three cases are at high risk of oscillations
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Analysis: the impact of K(t)

The eigenvalues of the Jacobian matrix are determined by

det (Df(x∗)− sI) =

= (s4 + b1s
3 + b2s

2 + b3s+ b4)(s+ ξ) = 0.

The factor (s+ ξ) is independent of the system parameters.

No new nonlinear dynamical behaviors arise due to the
time-varying PID controller.
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The surgery room scenario

I A Wiener individualized NMB model is estimated from a drug
bolus response.

I From the desired controller convergence rate and distance to
bifurcation, the gains of the PID controller K0, Ti, Td are
calculated, see [JPC2015].

I The parameters α, γ and the distance to bifurcation are
estimated on-line while the surgery proceeds.

I When the estimated distance to bifurcation goes under a given
threshold, of the PID controller is re-designed giving Kref .

I The recovery controller is activated for K0 → Kref .

Zhusubaliyev, Medvedev, Silva, Bifurcation analysis of PID-controlled

neuromuscular blockade in closed-loop anesthesia, Journal of Process

Control v. 25, January 2015, pp. 152-163
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Simulation experiment: parameter changes
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Figure: Time-domain changes in α and K, for ξ = 0.1.
The red square depicts the value of Kbif.
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Simulation experiment: system output
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Figure: Time-domain behavior of x3 and output y. The red dashed line
indicates 1.2x∗3, with x∗3 as the steady state value of the state variable x3
for t > t2.
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Estimation algorithms

The model

xt+1 =

[
Φ(αt) 03×2
02×3 I

]xtαt
γt

+

[
Γ(αt)
02×1

]
ut + vt

≡ f(xt, ut) + vt ,

yt =
100Cγt50

Cγt50 + (C xt)
γt + et ≡ h(xt) + et ,

State-of-the-art nonlinear recursive estimation algorithms:

I Extended Kalman Filter (EKF)
I Particle Filter (PF)

I Sampling importance resampling (SIR PF)
I Orthogonal basis particle filter (OBPF)
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Estimation algorithm: EKF

The nonlinear model is used with state updates calculated from
linearized dynamics

Ht =
∂h(x)

∂x

∣∣∣∣
x=x̂t|t−1

Kt = Pt|t−1H
T
t [HtPt|t−1H

T
t +R]−1

x̂t|t = x̂t|t−1 +Kt[yt − h(x̂t|t−1)]

Pt|t = Pt|t−1 −KtHtPt|t−1

x̂t+1|t = f(x̂t|t, ut)

Ft =
∂f(x, ut)

∂x

∣∣∣∣
x=x̂t|t

Pt+1|t = FtPt|tF
T
t +Q .
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Estimation algorithm: PF

Sampling importance resampling (SIR) PF:
I x(i) denote a particle, i = 1, 2, . . . , N
I w(i) the corresponding weight
I N the number of particles

I v
(i)
t is a draw from pv(v), the process noise distribution

I pe(e) is the measurement noise distribution

x̃
(i)
t+1 = f(x

(i)
t , ut) + v

(i)
t

w̃
(i)
t+1 = w

(i)
t pe(yt − h(x̃

(i)
t , ut))

w
(i)
t+1 = w̃

(i)
t+1/

N∑
j=1

w̃
(j)
t+1

x̂t+1 =

N∑
j=1

w
(j)
t+1x

(j)
t+1 .
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Estimation algorithm: OBPF

I The OBPF follows the steps of the PF

I An orthogonal series is fitted to the particle set in the
resampling step

p(xt|Yt) ≈
∑
k∈K

a
(k)
t φk(xt) ,

where a
(k)
t is the coefficient for the basis function k.

I The Hermitian basis functions are used. In the
one-dimensional case

φ0(x) = π−1/4e−x
2/2, φ1(x) =

√
2xφ0(x) ,

φk(x) =

√
2

k
xφk−1(x)−

√
k − 1

k
φk−2(x) .
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Estimation algorithm: OBPF
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Figure: A set of 50 weighted particles (gray stems) and the fitted series
expansion (black solid line) using the first 7 Hermite functions.
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Estimation algorithm: OBPF

I The OBPF is developed for efficient computations on parallel
platforms

I The global information on the estimated quantity expressed by
the particles is compressed to a few expansion coefficients

I The OBPF exhibits higher parallelizability and estimation
accuracy of compared to the SIR PF and the Gaussian PF

O. Rosén, A. Medvedev ”Parallel Recursive Estimation Using Monte

Carlo and Orthogonal Series Expansions”, American Control Conference,

Chicago, USA, July 2015.
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Experiments

The EKF, the SIR PF, and the OBPF have been evaluated on
I Synthetic data: 48 synthetic data sets generated from real

cases
I Clinical data: 48 data sets collected during PID-controlled

administration of atracurium under general anesthesia

Anesthesia phases:

1 0 < t ≤ 10 min, induction (initial bolus), open loop
2 10 < t ≤ 30 min, P-controller
3 30 < t ≤ 75 min, from the beginning of the recovery from the

initial bolus until the reference reaches its final value of 10%,
PID-controller

4 75 < t ≤ end, steady state, PID-controller

Rocha, C., Mendonca, T., and Silva, M.E. (2013). Modelling

neuromuscular blockade: a stochastic approach based on clinical data.

Mathematical and Computer Modelling of Dynamical Systems, 19(6),

540–556.
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Experiments: synthetic data
Case # 7

Time step
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Figure: Estimated α (upper plot) and γ (bottom plot) for the
Orthogonal Basis PF (OBPF), Sampling Importance Resampling PF and
EKF for case number 7 in the synthetic database. The settling time
instants are marked by the arrows.
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Experiments: synthetic data
Bias
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Figure: The true α and γ vs. estimation bias bα and bγ , respectively, for
the 48 cases in the synthetic database. EKF – green circles, PF – blue
crosses.

Rosén, Silva, Medvedev, Nonlinear Estimation of a Parsimonious Wiener
Model for the Neuromuscular Blockade in Closed-loop Anesthesia, IFAC
World Congress, Cape Town, South Africa, August, 2014.
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Experiments: synthetic data
RMSE
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Figure: Root mean square error R =

√
1
T

T∑
t=0

(xt − x̂t)2 for α (upper

plot) and γ (lower plot) as a function of the number of particles N .
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Experiments: synthetic data
PDF estimation by PBPF
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Figure: Marginal distribution for α at time t = 5min. The true PDF is
shown in dashed black line. The approximations obtained by the OBPF
with approximation orders from 0 to 4 are shown in colored solid lines.
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Experiments: clinical data
Case # 39
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Figure: Estimated model parameters for the EKF, in dashed green, and
the PF, in solid blue, over time for a case number 39 in the real database.
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Experiments: clinical data
Output error

Table: Output error (absolute value) of estimation for the EKF, the PF
and the OBPF, during the four phases of anesthesia; Best, Worst.

EKF PF

Phase mean stdv [min,max] mean stdv [min,max]

1 4.16 0.62 [2.58,5.42] 0.95 0.47 [0.24,2.34]
2 0.49 0.17 [0.16,0.85] 0.58 0.39 [0.14,1.97]
3 0.31 0.16 [0.08,0.98] 0.30 0.16 [0.13,0.77]
4 0.25 0.16 [0.04,0.97] 0.25 0.13 [0.07 0.76]

OBPF(0) OBPF(5)

Phase mean stdv [min,max] mean stdv [min,max]

1 0.87 0.53 [0.32,1.98] 0.90 0.44 [0.18,2.14]
2 0.52 0.15 [0.15,1.22] 0.52 0.18 [0.17,1.52]
3 0.31 0.18 [0.06,0.85] 0.28 0.18 [0.05,0.74]
4 0.26 0.16 [0.04,0.78] 0.23 0.14 [0.05 0.69]
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Computational complexity of PF
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Figure: RMSE as a function of the number of floating-point operations
per second (FLOPS) required for filter execution.
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Conclusions

I A PID-tuning policy to automatically recover from undesired
nonlinear oscillations in a drug delivery system is proposed

I A time-varying proportional PID gain is shown to preserve the
type of equilibria as in the case of constant controller gains.

I The recovery from oscillation time after applying the proposed
time-varying PID gain is evaluated in simulation for a database
of 48 cases, with the average recovery time of 4.22 min.

I Use a particle filter to estimate a Wiener model when there is
a large variation of the system variables, as in the induction
phase of anesthesia.

I Extended Kalman Filter is sufficient for tracking the model
parameters around a set point, as in the maintenance phase of
anesthesia.

I The Orthogonal Basis Particle FIlter offers the best
computation/performance ratio.
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PID controller tuning

PID design procedure in terms of (R,L). The model parameters α = 0.027,

γ = 2.4395. Design specifications: r∗ = 40%, T ∗conv = 30 min.. The shaded area

corresponds to the designs with Tconv ≤ T ∗conv The top side of the boundary

χ(αmin, L,R) = 0 (blue line) determines the region of controller robustness over

r∗ = αmin
α

. The red star depicts an admissible design (L = 8.3, R = 0.02) with

r = 42.178% and Tconv = 26.8 min.
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Manual administration in NMB
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Manual administration rocuronium. Upper plot: First twitch of a TOF stimulation

normalized by the reference twitch, quantifying the NMB level. Bottom plot:

rocuronium bolus. o on marks the time when a bolus of atropine and neostigmine is

intravenously administered to fasten the recovery from the NMB.
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