SESSION 4
SENSOR NETWORKS

(230 Magnus Egerstedt - Aug. 2013 sttt
m 5 5 &




Introduction

» Sensor networks are becoming an important component in
cyber-physical systems:
— smart buildings
— unmanned reconnaissance

~
N
NS

« Limited power capacity requires agorithms that can
maintain area coverage and limit power consumption.

W Magnus Egerstedt - Aug. 2013 Georgialnstitute
. of Technology




Node Models

Consider a network of N sensors, with the following characteristics:

p; € R < position

n; € Ny < power level

S; C B2 < sensor footprint
For example — standard disk model S

O
2
Si= e e R | |z —pill < A) p
S

Question: What 1s the connection between O
power level and performance? p
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Node Models

» A sensor can either be awake or asleep

1 = sensor on
0‘ p—

0 = sensor off

Power usage

1= fpow(n,0), 0=0 = =0

Sensor footprint

S=S{p,n0o), oc=0= 85=0

Mobility Node-level control variables

P = fmob(pyn, )
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Node Models

« The available power levels affect the performance of the sensor
nodes

» Sensor footprint — RF or radar-based sensors

— Decreasing power levels leads to shrinking footprints
* Frame rates — vision based sensors
« Latency issues across the communications network

No processor

2 Event!

ime!
# \ time!

----- @
Sleeping! ® Failure to deliver

el * information to users!
S i
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Coverage Problems
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Coverage Problems

* Given a domain M. Complete coverage is achieved if

N
MC| S+

1=1

» Areas are easier to manipulate than sets, and effective area coverage
1s achieved if

N
mg USZ < GCO’U(S)ZO-
1=1

» Instead one can see whether or not events are detected with sufficient
even detection probability

N
1 < prob (event € U SZ-) <

1=1

m Magnus Egerstedt - Aug. 2013

Georgialnstitute
off Technology



Coverage/Life-Time Problems

* Now we can formulate the general life-time problem as

max T such that G..,(S(T)) >0, Vt <T

« We will address this for some versions of the problem
— Node-based, deterministic
— Ensemble-based, stochastic
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Radial Sensor Model

Assume an isotropic RF transmission model for each sensor:

P Transmission
P S __ ttrans «———
recv —
owgr/ Arr2 power

density  _..--.. )

< Sensor-i ’

. @ ri " ...sets the maximum

' P>, . .

\ : sensing radius

0, Desired receiving

power density
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Radial Sensor Model

Area covered by sensor is given by:

P
s (t)2 _ 4§rans
Tecv

But, sensor-1’s transmitted power depends on its current power level:

Ptrans — O0471);

* Footprint:
2 aifi
1S(ni,04)| = mrs(t) = —
4S’I"GC’U E
W Magnus Egerstedt - Aug. 2013

Georgialnstitute
off Technology



Problem Formulation

» Our goal is effective area coverage, i.e.,
N
s

i=1

» Assume sensor footprints do not intersect, then:
N N n
(almost)
U Si| = Z 15| = Zami
=1 1=1 =1
« Coverage constraint:

Geov(S(t)) = Z%(t)m(t) —m

m <

>0
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Optimal Control

Let
r=[m,...,n~]", u=diag(o,...,on)

« Aggregate dynamics
() = —yu(t)z(t)

Problem: Find gain signals that solve

i . .
min J (u, @, 1) = / % ((uT(t)x(t) — M)+ uT(t)Ru(t)) dt
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Optimal Control

Hamiltonian:
H(u,z,t) = —uT () A(D)z(t) + % (u(®)Ta(t) — M)? + %u(t)TRu(t)

Where A(t) = diag(A;(t))represents the co-states
satisfying the backward differential equation:

At) = A@)u(t) — (ut)Tz(t) — M) ut),\(T) =0

Optimal gain signals:

{ w(t) = (z(t)z” (t) + R)_l (A(t) + MI) z(t) J
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Issues

Maybe not the right problem:
— No on/off (relaxation)
— No life-time maximization
What we do know about the “right” problem
— Only switch exactly when the minimum level 1s reached
— Knapsack++

Maybe we can do better if we allow for randomness in the model?
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The Setup

* Given a decaying sensor network we want to find a
scheduling scheme that maintains a desired network
performance throughout the lifetime of the network.

* The desired network performance is the minimum
satisfactory probability of an event being detected.

» Lifetime of the sensor network 1s the maximal time
beyond which the desired network performance cannot be
achieved.

* We assume that the sensor nodes are “dropped” over an

arca.
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Spatial Poisson Processes

We assume that the sensor nodes are dropped according to a spatial
Poisson point process:

. . . 10 "o..' ° 5 '.' '.'O- .'..'. "‘ . T LY
1.The number of points in any | O
subset X of D, n(X), are N L L I R
Poisson distributed with e e e T L
intensity A||X]|, where A is the A R AT I S
Intensity per unit area. 5:.';. e o - ,--*..'-“ - :;:-.‘: Ve
11.The number of points in any T SO S A R A
finite number of disjoint subsets — of. . Ui BT T
of D are independent random ooty St egn e

. . P e
Varla’bles‘ 0[] 1 2 3 4 5 é. } 8 Eli.' 10

()\A)ne—)\A

n!

P(n sensors in area A) =
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System Model

» All sensors are identical i.e., they have same

— Initial power and power decay rate

SR US e, e . [ offSensors
— Sensing capabilities SRR RTLRAE Bt
. . Bl o . Br(xe)
« All sensors have circular footprint B A
— , R R FEN O
SZ - Blr. (p’l/) 2{').0 OO..OO U"Q' .'? g .C:) ol
. . . i et o L. oo T
— An event at location x, 1s detected 1f ,|%¢ Dt B
S . [©) 0"
. . .Q P % .
Le S BT(pZ) i Coe 9% T % .-".'Q)--
T A
L aCoen o
P R S T
03 r N - B

« To conserve power, sensors are switched between on state and off
state
— Power is consumed only when a sensor is on: 7); = —7Yq;1);

/V

Prob that sensor is on at time t
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Event Detection Probability

* Consider a non-persistent event

— An event is non-persistent if it does not leave a mark in the
environment and can only be detected when it occurs.

e Theorems:

— Probability of an event going undetected by a non-decaying
sensor network 1s

. 2
Pu:e ATTr<q

— Probability of an event going undetected by a decaying sensor
network 1is

7“2(15) x 7t

. _Ace—vfgq(S)ds ¢
Py =e W1 A@) = mr()? = —’Yf a(s)d
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Controlling Duty Cycles

*  We need a controller of the form

q(t) = u(?)

to maintain a constant P, (as long as possible)

1 ()

AC

* Controller:

 Life time:
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Simulation Results

* A Monte — Carlo simulation of the network is performed

* Ina (10 x 10) unit rectangular region sensors are deployed according
to a spatial stationary Poisson point process with intensity A = 10.

 Different scenarios (non — decaying network, decaying network,
decaying network with scheduling scheme) are simulated with the
following parameters

— A (intensity per unit area) = 10
— v (power decay rate) = 1
— P, (desired probability of event detection) = 0.63
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Non-Decaying Footprints
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Event detection probability Pd vs time ¢ for non-decaying networks

with q=0.1.
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Decaying Footprints Without Feedback
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Event detection probability P, vs time ¢ for decaying networks with
q=0.1 and decay rate y = 1
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Decaying Footprints With Feedback
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Issues

* We may still not have the right problem:

— No on/off cost

— No consideration of the decreasing communications capabilities
* What we do know about the hard problem

— Rendezvous with shrinking footprints while maintaining

connectivity?
* Big question: Mobility vs. Sensing vs. Communications vs.
Computation???
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Summary IV

* By introducing power considerations into the formulation of the
coverage problem, a new set of i1ssues arise

» Life-time problems
» Shrinking footprints
* Ensemble vs. node-level design

* Big question: Mobility vs. Sensing vs. Communications vs.
Computation???
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Conclusions

* The graph is a useful and natural abstraction of the interactions
in networked control systems

* By introducing leader-nodes, the network can be
“reprogrammed” to perform multiple tasks such as move
between different spatial domains

» Controllability based on graph-theoretic properties was
introduced through external equitable partitions

» Life-time problems in sensor networks
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