
Chapter 11

Nonlinear feedforward
control

11.1 Basic ideas of feedforward control

A basic control problem is to generate a control signal u so that the output y of
a physical system follows a given reference signal r. The simplest configuration
is shown in figure 11.1, where S is the controlled system and F is the controller.
If F and S are regarded as operators for computing the output from the input,
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Figure 11.1: Feedforward from the reference signal.

then we want
y = S(Fr)⇒ y = r (11.1)

which implies that F should be the inverse of S,

F = S−1 (11.2)

Now consider a situation where the objective is to reject a disturbance. In figure
11.2 the output y is the sum of the output from the system S, having input u
and the output from system Sd having input d. The objective is to keep the
output zero despite the disturbance d. From the relation

y = (Sd + SF )d

it followa that F should be chosen as

F = −S−1Sd

These two examples show that in order to do feedforward, either from a reference
signal or a disturbance one has to use an inverse of the physical system. The
computation of a system inverse is thus a crucial step in feedforward design.
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Figure 11.2: Feedforward from a disturbance.

11.2 Linear feedforward

Consider equation (11.1) for single-input-single-output linear systems. Let S =
b(s)/a(s) where b and a are polynomials in the Laplace variable s. Then from
(11.2) F = a(s)/b(s), so that we get

y =
b(s)

a(s)

a(s)

b(s)
r = r (11.3)

This feedforward controller thus achieves the desired purpose. There are how-
ever two difficulties.

(I) The transfer function calculations in (11.3) assume that the initial con-
ditions of both systems are zero. Otherwise initial transients should be
added to the expression for y.

• If both a(s) and b(s) have all their roots strictly in the left half plane,
then all initial transients go to zero exponentially. Therefore y = r
will be satisfied asymptotically.

• If either a(s) or b(s) has a root in the right half plane the series
connection is an unstable system and the feedforward does not work.

(II) If the transfer function of the physical system is strictly proper the inverse
will be non-proper, i.e. the degre of the numerator will be greater than
the degree of the denominator. This means that the inverse will act as a
differentiator giving problems when dealing with real physical signals.

11.3 Nonlinear feedforward

Now consider the case of a nonlinear system

ẋ = f(x) + g(x)u, y = h(x) +D(x)u (11.4)

Note that there is a direct term D(x)u relating the input to the output (D = 0
in most applications). It is assumed that u(t) ∈ Rm

, y(t) ∈ Rm
(i.e. same

number of inputs and outputs) and that x(t) ∈ Rn
.
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Nonsingular D

In the case where D in (11.4) is nonsingular it turns out to be easy to invert the
system. This is because (11.4) can be rearranged by solving for u in the output
equation and then substituting into the state equation. This gives

ẋ = f(x) + g(x)D(x)−1(−h(x) + y), u = D(x)−1(−h(x) + y) (11.5)

With the differential equation written in this way it is natural to regard y as
the input and u as the output, so that this is a state space representation of
the inverse. Using x̂ for the state of the inverse system one can then write the
series connection (11.1) as

˙̂x = f(x̂) + g(x̂)D(x̂)−1(−h(x̂) + r)

ẋ = f(x) + g(x)D(x̂)−1(−h(x̂) + r)

y = h(x) +D(x)D(x̂)−1(−h(x̂) + r)

(11.6)

The basic property is in the following proposition.

Proposition 11.1 Suppose the system (11.6) is initialized so that x̂(0) = x(0).
Then for all positive t it holds that x̂(t) = x(t) and y(t) = r(t).

Proof. Substituting into the differential equation it is immediately clear that
x̂(t) = x(t) is a possible solution if the initial condition is x̂(0) = x(0). Since
the solution is unique the result follows.

The proposition shows that difficulty (I) from the linear case is still present.
The inverse is only exact when the initial conditions are correct. Otherwise one
has to rely on some sort of stability result. Sometimes Lyapunov theory helps,
as in the following example.

Example 11.1 Consider the electric circuit shown in figure 11.3. The input

u

+

-

x

+

-

R1

R
2

I

i 2

1

Figure 11.3: Nonlinear electric circuit.

u is the voltage of an ideal voltage source. The state is the voltage of the
capacitor. The resistor R1 is linear with unit resistance, while R2 is nonlinear
with the relation I2 = g(x). Then

ẋ = I1 − I2, I1 = u− x, I2 = g(x)
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and the complete model is

ẋ = −x− g(x) + u (11.7)

y = −x+ u (11.8)

The inverse then becomes

˙̂x = −g(x̂) + r (11.9)

u = x̂+ r (11.10)

and the series connection of the two systems is

˙̂x = −g(x̂) + r (11.11)

ẋ = −x− g(x) + x̂+ r (11.12)

y = −x+ x̂+ r (11.13)

A simulation of this series connection is shown in figure 11.4 for the case g(x) =
x3. The initialization is x(0) = 3 and x̂(0) = 0. It can be seen that the output
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Figure 11.4: Series connection of circuit model and its inverse. Reference signal
starts at 0 and output at −3.

rapidly converges to the reference. The convergence of x̂ to x can also be seen
by using the Lyaounov function V = 1

2 (x− x̂)2.

V̇ = (x− x̂)(−(x− x̂)− (x3 − x̂3)) ≤ −(x− x̂)2

D = 0 but nonsingular decoupling matrix

If the system is
ẋ = f(x) + g(x)u, y = h(x) (11.14)

i.e. D = 0 in (11.4) one can use the technique from section 3.1. It was shown
that

Y = d(x) +R(x)u (11.15)
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where Y , d and R are given by

Y =


y
(ν1)
1
...

y
(νm)
m

 , d(x) =

L
ν1
f h(x)

...
Lνmf h(x)

 , R(x) =

 Lg1L
ν1−1
f h1 . . . LgmL

ν1−1
f h1

...
...

Lg1L
νm−1
f hm . . . LgmL

νm−1
f hm


(11.16)

The system (11.14) can now be replaced by

ẋ = f(x) + g(x)u, Y = d(x) +R(x)u (11.17)

If the decoupling matrix R is nonsingular the system can be rewritten in analogy
with (11.5) to give the inverse

˙̂x = f(x̂) + g(x̂)R(x̂)−1(−d(x̂) + Y ) (11.18)

u = R(x̂)−1(−d(x̂) + Y ) (11.19)

Here difficulty (II) from the linear case is seen in the nonlinear context: Y
contains differentiations of the output.

The Silverman-Hirschorn-Singh algorithm

If the decoupling matrix R turns out to be singular or if D(x) in (11.4) is
nonzero but singular the computation of an inverse turns out to be more com-
plicated. This is because further differentiation of the output now would lead
to differentiation of u. Suppose the system is given by

ẋ = f(x) + g(x)u

y = h(x) +D(x)u
(11.20)

where D(x) is singular (possibly D = 0). Let the rank of D(x) be r < m in
some open set Ω. By permuting rows one can then make the first r rows in D
linearly independent. Let this be achieved by multiplication with the matrix E1

from the left. Then

E1y = E1h(x) +

[
Da(x)
Db(x)

]
u (11.21)

where Da is an r×m matrix of rank r and all rows in Db are linear combinations
of rows in Da. This means that Db can be zeroed by subtraction of suitable
linear combinations of rows in Da or put in another way: there exists a matrix
F (x) so that Db(x) + F (x)Da(x) = 0. Now multiply from the left with the
matrix

E2(x) =

[
Ir 0
F (x) Im−r

]
(11.22)

Then

E2(x)E1y = E2(x)E1h(x) +

[
Da(x)

0

]
u (11.23)

Define

ỹ = E1y =

[
ya
yb

]
, E1h =

[
ha
hb

]
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Then (11.23) can be written[
ya

yb + F (x)ya

]
=

[
ha

hb + F (x)ha

]
+

[
Da(x)

0

]
u

Differentiating the last rows with respect to time gives the expression[
ya

φ(y, ẏ, x)

]
︸ ︷︷ ︸

Y (1)

=

[
ha(x)

h̃b(x)

]
︸ ︷︷ ︸
h(1)

+

[
Da(x)

D̃b(x)

]
︸ ︷︷ ︸
D(1)

u

where

φ(y, ẏ, x) = ẏb + F ẏa +
∑

ya,jLfFj

h̃b = Lf (hb + Fha)

D̃b,j = Lgj (hb + Fh̃a −
∑

ya,jFj)

Here ya,j is the j : th component of ya, while gj , Fj and D̃b,j denote the j : th
column of each matrix.

The process is repeated untill after k iterations there is an expression

Y (k)(y, ẏ, . . . , y(k), x) = h(k)(x) +D(k)(x)u

where D(k)(x) is nonsingular. The inverse is then

˙̂x = f(x̂) + g(x̂)(D(k)(x̂))−1(−h(k)(x̂) + Y (k))

u = (D(k)(x̂))−1(−h(k)(x̂) + Y (k))
(11.24)

For linear systems this inversion procedure is called Silverman’s algorithm (for
linear systems F is a constant matrix which is a great simplification). The
extension to nonlinear systems is called the Hirschorn-Singh algorithm.

Example 11.2 Consider the system

ẋ1 = −x31 + u1

ẋ2 = u2

y =

[
x1
x2

]
+

[
1 0
1 0

]
u

(11.25)

Using

E1 = I, E2 =

[
1 0
−1 1

]
gives [

y1
y2 − y1

]
=

[
x1

x2 − x1

]
+

[
1 0
0 0

]
u

Differentiating the second row then produces[
y1

ẏ2 − ẏ1

]
=

[
x1
x31

]
+

[
1 0
−1 1

]
u
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The D-matrix is now nonsingular so it is possible to solve for u and define the
inverse.

u1 = −x̂1 + y1

u2 = ẏ2 − ẏ1 − x̂31 − x̂1 + y1

˙̂x1 = −x̂31 − x̂1 + y1

˙̂x2 = −x̂31 − x̂1 + y1 + ẏ2 − ẏ1

Note that the differential equation for x̂2 is redundant since we know that x̂2−
x̂1 = y2 − y1.

Example 11.3 “The Hirschorn-Singh example”.

ẋ1 = x1u1

ẋ2 = x3 − x3u1
ẋ3 = x1u2

y1 = x1

y2 = x2

Since D = 0 the first step is to differentiate the whole y-vector.

ẏ =

[
0
x3

]
+

[
x1 0
−x3 0

]
u

Now

E1 = I, E2 =

[
1 0

x3/x1 1

]
so that multiplying with E2 from the left gives[

ẏ1
ẏ2 + x3

x1
ẏ1

]
=

[
0
x3

]
+

[
x1 0
0 0

]
u (11.26)

Differentiating the second output equation gives

ÿ2 +
x3
x1
ÿ1 −

x3
x1
ẏ1u1 + ẏ1u2 = x1u2 (11.27)

From the second row of (11.26) x3 can be solved

x3 = − y1ẏ2
ẏ1 − y1

Since from definition x1 = y1, x2 = y2, all states are determined by the output
and its derivatives, so the inverse will have no dynamics. Combining (11.26)
and (11.27), u can be solved from

y1u1 = ẏ1

ẏ1ẏ2
ẏ1 − y1

u1 + (ẏ1 − y1)u2 =
ÿ1ẏ2
ẏ1 − y1

− ÿ2

Note that the inverse can only be computed for y1 6= 0 and ẏ1 6= y1.
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