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Chapter 1

Introduction

The Divisions of Automatic Control and Communication Systems consist of
some forty persons. We teach thirteen undergraduate courses to more than
eleven hundred students. The courses cover both traditional control topics
and more recent topics in model building and signal processing.

Our research interests are focused on the following areas:

- System Identification: We are interested in a number of aspects ranging
from industrial applications, to aspects of the fundamental theory and
properties of algorithms.

- Non-Linear and Hybrid Systems: Here we are interested both in developing
theory for nonlinear systems and to understand and utilize how modern
computer algebraic tools can be used for practical analysis and design.
Hybrid systems is an important and emerging field covering problems
of how to deal with systems with both discrete and continuous phe-
nomena.

- Sensor Fusion: Techniques to merge information from several sensors are
of increasing importance. We are involved in four different industrial
application of this kind, at the same time as we try to abstract the
common underlying ideas. Particle filters play an important role in
this context.

- Diagnosis and Detection Problems are very important in today’s complex
automated world. Within the Competence Center ISIS we work with
several industrial problems of this kind.
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- Communication Applications: We have several applied and theoretical
projects that deal with communication systems.

- Robotics Applications: Within ISIS we have a close cooperation with ABB
Automation Technology Products – Robotics.

- Optimization for Control and Signal Processing: Convex optimization tech-
niques are becoming more and more important for various control and
signal processing applications. We study som such applications, in par-
ticular in connection with model predictive control.

Details of these research areas are given in the corresponding sections of
this report.

We thank the Swedish Research Council (VR), the Swedish Agency for
Innovation Systems (VINNOVA) and the Foundation for Strategic Research
(SSF) for funding a major part of our research.

The Control and Communication Divisions take active part in the VIN-
NOVA Competence Center ISIS (Information Systems for Industrial Control
and Supervision), whose Director is Lennart Ljung. The ISIS Center started
in November 1995. Phase III of this Competence center started January 1,
2001 and lasts for three more years.

The divisions are also central partners in the Research School ECSEL (Ex-
cellence Center for Computer Science and Systems Engineering in Linköping),
which started its activities during 1996. This research school is funded by
the Foundation for Strategic Research (SSF) and is a joint effort between the
departments of Electrical Engineering and Computer Science.

During the year Fredrik Tjärnström defended his PhD dissertation and
Rickard Karlsson, Per-Johan Nordlund, Måns Östring, Claes Olsson, Jonas
Jansson, Niclas Persson and David Lindgren their Lic. Eng. dissertations.

The Divisions hosted the biannual Swedish control conference “Reglermöte”
in May 2002. The conference had about 230 participants an was preceded by
special topic meetings on control education as well as meetings for doctoral
students, administrators, and technical support personnel.

Also, in 2002 Lennart Ljung received the Quazza Medal from the Inter-
national Federation of Automatic Control (IFAC) in connection with the
triennal IFAC Congress in Barcelona.

At the same congress Fredrik Tjärnström was selected as one of three
finalists for the Young Author Prize.
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Moreover the Control and Communication group was selected as one of 10
“Excellent Research Environments” by the Swedish Research Council (VR).
This involved an extra bonus grant for the years 2002 and 2003.

In the following pages the main research results obtained during 2002 are
summarized. More details about the results can be found in the list of articles
and technical reports (See Appendices G and H. Numerals within brackets
refer to the items of these appendices). These reports are available free of
charge, most easily from our web-site. The next chapter describes how you
can search for our publications in our data base and download any technical
report.
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We invite you to visit our home page:

http:// www.control.isy.liu.se

The competence center ISIS has the home page

http://vir.liu.se/isis

and for the research school ECSEL turn to

http://vir.liu.se/ecsel
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Chapter 2

Network Services

There are a number of ways you can access the work produced at this
group. Most convenient is probably electronic mail to the person you wish
to contact. The email addresses are listed at the end of this activity re-
port. Apart from these, shorter but quite arbitrary email addresses you
can always use the general form: FirstName.LastName@isy.liu.se, e.g.
Lennart.Ljung@isy.liu.se.

We also have a generic email address:

Automatic.Control@isy.liu.se

or AC@isy.liu.se for short. Emails sent to this address are currently sent
to our secretary Ulla Salaneck.

Finally you can also retrieve reports and software electronically either by
using our FTP- or World Wide Web- services. This is our preferred method
of distributing reports.

2.1 World Wide Web

The most powerful way to get in touch with this group is probably by using
our World Wide Web service (WWW). The address to our web pages is:

http://www.control.isy.liu.se

When you surf around in our WWW-environment you will find some general
information over this group, the staff, seminars, information about under-
graduate courses taught by the group and you will get the opportunity the
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bring home technical reports produced at this group. This is the easiest way
to access the group’s work, just click and collect.

Our WWW service is always under development. We look forward to your
feedback regarding this service. If you have any questions or comment, please
send an email to our research engineer, Joakim Svensén:

joasv@isy.liu.se

2.2 Publications Data Base

Selecting “Publications” in our web pages gives access to our publications
data base. See Figure 2.1. It allows you to search for publications by author,
area, year and/or publication type. You can also search for words in the
title. The result of the search is given either as a clickable list of publications
(Choose HTML) or a list of BibTeX items (Choose Bibtex). See Figure 2.2 for
an example of a search result. Clicking on the publication items brings you
to the home page of the publication with further information. See Figure 2.3.
Department reports can always be downloaded from the home page, while
articles and conferenec papers refer to a related department report that can
be downloaded in .ps or .pdf format.
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Figure 2.1: The publications data base interface
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Figure 2.2: Example of search result
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Figure 2.3: Example of a publication home page
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Chapter 3

System Identification

3.1 Introduction

The research in System Identification covers a rather wide spectrum, from
general principles to particular applications.

During 2002, one PhD-thesis, [1] and one licentiate theses, [7], have been
finished in this area. These will be described in the next two sections.

3.2 Variance Expressions and Model reduc-

tion in System Identification

Fredrik Tjärnström’s PhD-thesis [1] deals with how the variance of an esti-
mated model is transformed and affected when the order of the estimated
model is reduced.

In fact, estimating models from data by first estimating a high order model
which is then subjected to model reduction could be an attractive approach
to system identification. In this way it is possible to keep track of the bias
errors that are (possibly) present in the low order model. Another important
aspect is the variance of the reduced model. This leads us to the question:
Will it ever be better to estimate a low order model via model reduction than
estimating the low order model directly from data? This is one of the topics
that are discussed in [1]. The somewhat surprising result is that using L2

model reduction it could in some cases be strictly better to estimate the low
order model using reduction techniques, and in most cases we get the same
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variance as the direct estimation would have given. This result has also been
published in [18]. The output error case is treated in [59].The main results
from this analysis are a covariance expression for the final low order model
that is easy to compute and an analysis on how to optimize this approach
with respect to variance.

In the case of undermodeling, the variance can also be estimated using a
bootstrap technique, [11]

3.3 Subspace selection techniques for classi-

fication problems

The main topic of David Lindgren’s licentiate thesis, [7] is to find low dimen-
sional projections of observed data that makes classification and clustering
more efficient.

Three new algorithms are introduced and described. The Asymmetric
Class Projection is a computationally efficient method to find subspaces for
classification between two classes with small mean and large covariance dif-
ferences. The Optimal Discriminative Projection (ODP) is an algorithm
that uses a particular composition of Givens rotations to parameterize all
subspaces. The subspaces are optimized for classification. The Clustered
Regression Analysis uses the ODP subspace for conditional expectation pre-
diction.

These results are also presented in [22].

3.4 Simple process models

In process industry models of type deadtime + dominating time constant +
static gain are commonly used:

G(s) =
K

1 + sTp1

e−sTd (3.1)

Among variants of this model, we can have a model without delay (Td = 0):

G(s) =
K

1 + sTp1

(3.2)
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and/or introduce an enforced integration (self-regulating process)

G(s) =
K

s(1 + sTp1)
e−sTd (3.3)

Moreover, on can postulate two real poles with or without a zero

G(s) =
K(1 + sTz)

(1 + sTp1)(1 + sTp2)
e−sTd (3.4)

A further possibility is to allow resonant poles (”under-damped models”):

G(s) =
K(1 + sTz)

1 + 2ζsTr + (sTr)2
(3.5)

Clearly a variety of models can be defined based on these components.
It is interesting to study how such models can be estimated. Classical

techniques involve graphical and similar methods. Of course, these simple
process models can also be estimated within the traditional prediction error
framework. Such issues are discussed in [68] and [34].

3.5 Determining model structures with ANOVA

Assume that a non-linear FIR model describes the measurements yt from a
system with input ut, that is,

yt = g(ut, ut−T , ut−2T , ..., ut−kT ) + et.

The value of k is unknown in addition to which time lags of ut that contributes
to the value of yt and g is an unknown static non-linear function of up to
k + 1 variables. If proper regressors could be found without too much effort,
the problem of selecting the function g and estimate its parameters would be
much easier.

The statistical analysis method ANOVA is a widely spread tool for finding
out which factors contribute to given measurements. It has been used and
discussed since the 1940’s and is a common tool in medicine and quality
control applications. ANOVA has been applied to the problem above in an
approach, novel to the system identification area [47]. The main advantage
of the method is that no assumptions on the function g are needed.
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The method is based on hypothesis tests with F-distributed test variables
computed from the residual quadratic sum, where the residuals are the differ-
ence between the measured output and the output from a very coarse model
based on sample means. Depending on what hypotheses are tested to be true
or false a corresponding model structure can be obtained. This model struc-
ture defines the selected regressors and what relation they should have in the
model, that is, if they affect the output additively or with interaction. Var-
ious aspects and properties of ANOVA in system identification applications
have been discussed in [47].

3.6 Verification of Piecewise Affine Systems

Piecewise affine systems constitute an important subclass of hybrid systems,
and consist of several affine dynamic subsystems, between which switchings
occur at different occasions. As for hybrid systems in general, there has been
a growing interest for piecewise affine systems in recent years, and they occur
in many application areas.

In many cases, safety is an important issue, and there is a need for tools
that prove that certain states are never reached, or that some states are
reached in finite time. The process of proving these kinds of statements is
called verification. Many verification tools for hybrid systems have emerged
in the last ten years. They all depend on a model of the system, which will
in practice be an approximation of the real system. Therefore it would be
desirable to learn how large the model errors can be, before the verification is
not valid anymore. In [62], a verification method for piecewise affine systems
is presented, where bounds on the allowed model errors are given along with
the verification. It is also suggested how this method can be combined with
certain aspects of control design.

3.7 Models on Demand: Direct Weight Op-

timization

In this project, we focus on the identification of nonlinear models, and, in
particular, on the situation that occurs when a very large amount of data is
available.

Traditional treatments of the estimation problem in statistics and system
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identification have mainly focused on global modeling approaches, i.e., the
model has been optimized on basis of the entire data set. However, when
the number of observations grows very large, this approach becomes less
attractive to deal with because of the difficulties in specifying model structure
and the complexity of the associated optimization problem. Inspired by
ideas from local modeling and database systems technology, we have taken
a conceptually different point of view. We assume that all available data
are stored in a database, and that models are built “on demand” as the
actual need arises. When doing so, the bias/variance trade-off inherent to
all modeling is optimized locally by adapting the number of data and their
relative weighting. For this concept, the name model-on-demand has been
adopted.

This concept is formalized as a direct optimization of weights in a linear-
in-output observations estimate. The criterion to be optimized is the max
mean square error over a certain family of functions. Results of this kind are
given in [82], and [60].

3.8 Linear Approximations of Nonlinear Sys-

tems

In real life all systems are nonlinear. Yet, most models estimated using
data from such systems are linear. It is very relevant to ask what linear
approximation these models will converge to. A general answer can be given
in terms of the cross spectrum between the input and the output and of the
input spectrum (assuming these exist). A second order linear equivalent of
the true system can be computed essentially using Wiener filter theory. The
best approximation will depend on the input used.

It is an important but difficult problem to characterize, in general terms,
this best model and how it differs from the true system. Some initial results
along these lines are given in [41] and [57].

3.9 Other Aspects on Identification Methods

Approximation, Model Error Modeling and Control De-
sign
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Much of recent research is dedicated to understand the two main uncer-
tainty sources, leading to model errors: unmodeled dynamics and noise af-
fecting the data. In [10], we discuss and compare three approaches to System
Identification, that explicitly aim at separating these contributions: Good-
win’s Stochastic Embedding, Model Error Modeling (employing prediction
error methods) and Set Membership Identification. An example, using (sim-
ulated) data from a non-linear plant, illustrates the methods.

Accelerated Convergence in Stochastic Approximation

It is well known that the simple LMS (gradient) method for estimating the
parameters of a linear regression could be quite slow:

θ̂(t) = θ̂(t − 1) + γ(t)(y(t) − ϕT (t)θ̂(t − 1)) (3.6)

It has been known for a while that the asymptotic properties of this estimate
can be improved towards the theoretic Cramer-Rao limit by a second round of
averaging of θ̂(t). Some new variants and aspects of this have been analyzed
in [14] and [24].

Optimal Subspace Methods

So called Subspace methods have been the subject of considerable recent in-
terest in the literature on System Identification. The methods are intriguing,
since they are numerically efficient, fast and do not require iterative search.
At the same time they contain several design variable choices, and there is
no full understanding about the best choices of these. Some partial results
along these lines are given in [8]. Some improvements in the algorithms are
suggested in [48].
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Initialization of parametric search in identification of
linear systems

When we have a physically parameterized linear model, it is important ques-
tion to find good initial parameter estimates, where to start the iterative
search for the best parameters. Some ideas to deal with this problem are
described in [31].

Local linear models

A model may have so called regime variables to characterize some operating
point or similar. A model that is linear for fixed regime variables is called a
local linear model. Techniques to estimate such models in state-space form
are suggested in [15].
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Chapter 4

Nonlinear Systems

4.1 Algebraic Methods in Control

Many problems in control theory can be formulated as formulas involving
polynomial equations, inequalities, quantifiers (∃,∀) and logical connectivi-
ties (∨,∧). One example of such a formula is

∃u
[
f(x, u) = 0 ∧ u2 ≤ 1

]
.

This can be seen as a description of all points, x ∈ Rn of a nonlinear system,
ẋ = f(x, u) which can be made stationary by use of some admissible control,
u2 ≤ 1.

The problem of Quantifier Elimination, (QE) consists of finding a formula
without quantified variables (without u in the above case) which is equivalent
to the original formula. This is always possible according to a result in the
late forties by A. Tarski. However, the calculations involved in this original
algorithm was to complex to be of any practical value. Lately there has
been an increasing interest in QE due to the rapid development of computer
algebra.

The most efficient implementations of QE-algorithms today are based on
Cylindrical Algebraic Decompositions, (CAD). The method constructs a de-
composition of Rn such that a given set of polynomials have constant sign on
each component. Such a decomposition is a starting point for the elimination
of quantified variables from a formula.

Other system theoretic questions concern the elimination of variables, for
instance in going from state space to input-output descriptions In [33] many
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of the aspects concerning the use of algebraic methods in control are de-
scribed.

4.2 Lyapunov based design tools

4.2.1 Backstepping for rigid bodies and in flight con-
trol

Aircraft flight control design is traditionally based on linear control theory,
due to the existing wealth of tools for linear design and analysis. However, in
order to achieve tactical advantages, modern fighter aircraft strive towards
performing maneuvers outside the region where the dynamics of flight are
linear, and the need for nonlinear tools arises.

In this research project we investigate backstepping as a new framework for
nonlinear flight control design. Backstepping is a recently developed design
tool for constructing globally stabilizing control laws for a certain class of
nonlinear dynamic systems.

We have also extended the control concept to include control of general
rigid bodies, [55]. It tuns out to be possible to control the velocity of a rigid
body, even if the force input is one-dimensional, provided the applied torque
can be chosen arbitrarily in three-space.

4.3 Control allocation

Aircraft control allocation deals with the problem of distributing a given
aerodynamic moment demand among an available, redundant set of control
surfaces. Most existing methods for control allocation are static in the sense
that the resulting control distribution only depends on the current moment
demand. In [52, 53] a method for dynamic control allocation is proposed
in which the relationship between the moment demand and the resulting
control distribution is dynamic. This is achieved by penalizing the rates as
well as the positions of the actuators. In the nonsaturated case, the resulting
control distribution is determined by a first order linear filter which can be
assigned different properties at different frequencies. The main advantage of
the method is that it allows the user to design the transient and steady state
control distributions separately.
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The connection between control allocation and traditional linear quadratic
theory is explored in [54].

The use of classical active set methods for real-time control allocation is
investigated in [56]. It describes active set algorithms that always find the
optimal control distribution, and shows by simulation that the computational
complexity is in the same range as for approximate pseudoinverse methods,
which have been previoulsy suggested by several researchers.

4.4 Model Predictive Control

In Model Predictive Control (MPC) an optimal control problem over a finite
horizon is solved. To handle robustness and disturbance issues, minimax
MPC has been studied. In particular the joint extimation and control prob-
lem has been investigated in [64]. The problem of uncertain input gain is
considered in [65] while minimax MPC for LFT is treated in [66]. Finally
some alternative approaches for minimax MPC are considered in [67].

4.5 DAE models and bond graphs

DAE (differential-algebraic equation) models extend ordinary state space
models by allowing arbitrary equations containing the derivatives of physical
variables implicitly as well as purely static relations. They are of interest
in modeling mode changes in systems, because a mode change can intro-
duce additional equations that destroy a state space structure. A switched
bond graph approach to this problem is presented in [9]. An algorithm that
gives initial values for the continuous state variables is derived from the
switched bond graph representation of the system. It handles discontinuities
introduced by a changed number of state variables at a mode change. The
algorithm is obtained by integrating the bond graph relations over the mode
change and assuming that the physical variables are bounded. This gives a
relation between the variables before and after the mode change. It is proved
that the equations for the new initial conditions are solvable.

The algorithm is related to singular perturbation theory by replacing the
discontinuity by a fast continuous change. The action of a single switch
tuned by a single parameter is considered. By letting this parameter tend
to zero, the same initial state values are achieved as the ones derived by the
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presented algorithm. The algorithm is also related to physical principles like
charge conservation.

21



Chapter 5

Sensor fusion

This project is carried out by Division of Communication Systems and Divi-
sion of Automatic Control in cooperation with SAAB (Dynamics and Gripen)
Volvo (Cars), and NIRA (Automotive algorithms). Highlights of the year are

• the survey paper [20], in IEEE Trans. on Signal Processing, which sur-
veys six different applications involving collaboration with six different
companies. This paper summarizes most activities below.

• The licentiate theses by Rickard Karlsson [2], Per-Johan Nordlund [3]
and Niclas Persson [6].

• The increasing number of invited and regular conference papers [27,
50, 77, 78, 80].

The students in these area are summarized below:

Name Company Funding Start Lic. PhD
Jan Palmqvist SAAB Aircraft ISIS 1995 1997 –
Niclas Bergman – ISIS 1996 1997 1999
Rickard Karlsson formerly SAAB Dynamics ISIS 2000 2002 –
Per-Johan Nordlund SAAB Aircraft ISIS 2000 2002 –
Jonas Jansson Volvo Car Volvo 1999 2001 –
Andreas Eidehall Volvo Car Volvo 2002 – –
Christina Grönwall FOI FOI 1997 2000 –
Gustaf Hendeby – ISIS 2002 – –
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Jan Palmqvist became manager of the navigation group at SAAB 1998, a
position that Per-Johan Nordlund was offered 2002. Niclas Persson became
a project leader at NIRA Dynamics 2002. Niclas Bergman is now at SAAB
CelsiusTech and he is responsible for data fusion within the SAAB concern.

5.1 Particle filter

The particle filter has become central for most of the sensor fusion applica-
tion, so we start with a brief overview.

Traditionally, linear or linearized models are used, where the uncertainty
in the sensor and motion models is typically modeled by Gaussian densities.
Hence, classical sub-optimal Bayesian methods based on Kalman filters can
be used. The sequential Monte Carlo method, or particle filter, provides
an approximative solution to the non-linear and non-Gaussian estimation
problem. The particle filter approximates the optimal solution, hence it can
outperform the Kalman filter in many cases, given sufficient computational
resources.

Let xt ∈ R
n denote the state of the observed system and Yt = {yi}t

i=1 be
the set of observations until present time. Consider the following non-linear
discrete-time tracking system

xt+1 = f(xt, vt)

yt = h(xt, et),

with process noise vt and measurement noise et. The process noise reflect the
unknown target maneuver and the measurement noise the sensor errors. The
non-linear prediction density p(xt|Yt−1) and filtering density p(xt|Yt) for the
Bayesian interference are given by

p(xt+1|Yt) =

∫
Rn

p(xt+1|xt)p(xt|Yt)dxt

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
.

Sequential Monte Carlo methods, or particle filters, provide an approxi-
mative Bayesian solution to discrete-time recursive problem by updating an
approximative description of the posterior filtering density.

The Monte Carlo filter approximates the probability density p(xt|Yt) by a

large set of N particles {x(i)
t }N

i=1, where each particle has an assigned relative
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weight, w
(i)
t , such that all weights sum to unity. The location and weight of

each particle reflect the value of the density in the region of the state space.
The particle filter updates the particle location and the corresponding weights
recursively with each new observation.

The posterior is estimated by a delta-Dirac sum using the importance
weights

p(xt|Yt−1) ≈
N∑

i=1

w̃
(i)
t δ(xt − x

(i)
t ),

where w
(i)
t ∝ p(yt|x(i)

t ) and w̃
(i)
t is the normalized weights. The recursive solu-

tion using particle filters may be implemented using the sampling importance
resampling (SIR) algorithm from Gordon et. al. 1993.

In Figure 5.1 the particle filter method is demonstrated where the particles
or samples are used to visualize the posterior.
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Figure 5.1: Probability density using the SIR method.

5.2 GIS based positioning

5.2.1 Aircraft terrain navigation

The research conducted in the area of sensor fusion has its origin in an
application of terrain aided aircraft navigation. Since this application has

24



been instrumental for the other activities, we start with a short review of
this project.

In this application an aircraft position is autonomously determined by
fusing measurements from an inertial navigation system, a digital map and
a radar altimeter. By measuring the terrain height variations along the
aircraft flight-path and comparing these with a digital terrain map, a position
estimate of the aircraft is obtained. The comparison between the map and the
measurements is a nonlinear estimation problem where unconventional and
conceptually different sources of information are fused together. Research as
been focused on finding a reliable and effective algorithm for this position
determination.

During this work, close contact has been established both with Saab Dy-
namics and Saab Military Aircraft. A full-scale commercial implementation
of a company secret solution has been developed at Saab during a period of
two decades. Their expertise in this application field has proved extremely
useful when developing and testing new ideas.

An effective algorithm solving the terrain-aided navigation problem has
been developed and implemented. Simulation tests comparing the newly
developed method with the full-scale implementation at Saab shows out-
standing performance of the new method, both concerning the speed of con-
vergence of the algorithm and the steady state estimation accuracy. The
superior performance is obtained at a fairly low computational cost which
allows for online implementation.

Furthermore, the terrain-aided navigation problem has been analyzed and
fundamental bounds on the achievable performance have been derived. The
implemented method developed in this work has been shown to meet these
bounds in extensive simulation evaluations. The bounds have also been used
to derive information maps which can be used to support mission planning.

More recently, work has been directed towards the general issue of on-line
estimation for non-linear and non-Gaussian state space models. The ex-
perience from the terrain navigation application have been generalized and
applied to the recursive estimation problem. Work has been conducted in
the area of simulation based methods for nonlinear estimation. This is a cur-
rently very hot area which promise tractable solutions to high dimensional
estimation problems. Algorithms for simulation based estimation in recursive
estimation have been studied, and applied to the terrain navigation appli-
cation. General bounds for nonlinear recursive estimation have also been
developed. The project is presented in detail in:

25



• N. Bergman, Recursive Bayesian Estimation: Navigation and Tracking
Applications, 1999.

• N. Bergman, L. Ljung and F. Gustafsson Terrain Navigation using
Bayesian Statistics IEEE Control Systems Magazine 19(3), June 1999.

5.2.2 Aircraft integrated navigation

This project is currently focused on finding feasible estimation algorithms
for integrated aircraft navigation. Integrated navigation means that mea-
surements from two or more navigation sensors are fused to provide a more
accurate and reliable navigation solution. The sensors we have been con-
centrating on are the inertial navigation system together with terrain-aided
positioning. The challenge here consists of finding algorithms that solve the
recursive Bayesian estimation problem for a system which is highly nonlinear
(terrain-aided positioning) and at the same time is high-dimensional (inertial
navigation).

This is an extension of the previous terrain-aided navigation project (see
Section 5.2.1), which focused on horizontal position only. We know from this
earlier project that recursive Monte Carlo methods, or particle filters, provide
a promising solution to the two-dimensional terrain-aided positioning. How-
ever, increasing the dimension, including the entire spectra of states given by
the inertial navigation system, makes the standard particle filter extremely
ineffective. This calls for Rao-Blackwellization techniques, meaning that we
marginalise the full conditional posterior density with respect to linear (or
almost linear) parts, and estimate these parts using multiple Kalman filters.
The remaining low-dimensional part of the state vector is estimated using
the particle filter. For details on the Rao-Blackwellization method see [3].

5.2.3 Vehicle positioning

Map matching is used in all commercial automotive navigation systems. It
normally simply means that the GPS position is mapped to the closest road
on the map. We have extended that definition to map a driven trajectory
to a road map. The particle filter provides an algorithm for computing the
optimal mapping from double integrated wheel speed signals to the road
map. That is, a GPS free positioning system is obtained, where the only
sensors are wheel speed and a road map (interpreted as a state constraint).
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Fig. 5.2 shows a sequence of images of the particle cloud on a flight image
of the local area. The driven path consists of a number of 90 degrees turns.
Initially, the particles are spread uniformly over all admissible positions, that
is, on the roads, covering an area of about one square kilometer. After the
first turns, a few clouds are left. After 4–5 turns, the filter essentially has
converged. One can note that the state evolution on the straight path extends
the cloud along the road to take into account unprecise velocity information.
Details of the implementation are found in [80].

Figure 5.2: Car positioning: Sequence of illustrations of particle clouds (white
dots) plotted on a flight image for visualization. The center point ’+’ shows
the true position and ’x’ the estimate.

The system has been implemented in a Compac IPAQ hand held com-
puter by a master thesis project, and a complete car navigation system was
developed as another student project.

5.2.4 Cellular phone positioning

The problem of position estimation from Time Difference Of Arrival (TDOA)
measurements occurs in a range of applications from wireless communication
networks to electronic warfare positioning. Correlation analysis of the trans-
mitted signal to two receivers gives rise to one hyperbolic function. With
more than two receivers, we can compute more hyperbolic functions, which
ideally intersect in one unique point. With TDOA measurement uncertainty,
we face a non-linear estimation problem. We here suggest and compare both
a Monte Carlo based method for positioning and a gradient search algorithm
using a non-linear least squares framework. The former has the feature to
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be easily extended to a dynamic framework where a motion model of the
transmitter is included. The project is summarized in [27].

5.3 Target tracking

Many target tracking applications can be studied using a Bayesian formula-
tion.

5.3.1 Angle-only tracking.

In Figure 5.4 an air-to-air passive ranging is presented. The passive ranging
or angle-only tracking application, when only angle information is available
has been investigated. In [2] an air-to-air application is studied where the
particle filter is compared to a bank of linearized Kalman filters. Also the
choice of coordinate system is discussed, where Cartesian and modified spher-
ical systems are used.

5.3.2 Monte Carlo data association.

In [2] a multi-target data association application a simulation based approach
for data association is proposed and compared to classical algorithms for an
air-to-air tracking application. Moreover, the number of particles needed in
the particle filter is adapted using a control structure to reduce the compu-
tational complexity.

Many target tracking applications can be studied using a Bayesian formu-
lation.

5.3.3 Monte Carlo data association.

In [2] a multi-target data association application a simulation based approach
for data association is proposed and compared to classical algorithms for an
air-to-air tracking application. Moreover, the number of particles needed in
the particle filter is adapted using a control structure to reduce the compu-
tational complexity.
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Figure 5.3: (a) Test scenario: four receivers are placed in a square, and six
resulting hyperbolic functions from noise-free TDOA:s intersect at the trans-
mitter position. Also shown is the particle cloud and the resulting position
estimate using a proposed algorithm. (b) Same as (a), but the hyperbolic
functions are computed from six different noisy TDOA vectors. This illus-
trates that in general there is no unique intersection of all six lines. (c)
Contour plot of non-linear least squares criterion

∑
i<j(∆di,j −h(X,Y ))2. In

this scenario, there is no local minima and a gradient algorithm will converge
from any initialization. (d) Gradient search using a normalized least mean
square method (compare the path to the contour plot in (c)).
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Figure 5.4: Air to air passive ranging.

5.4 Forward Collision Avoidance of Cars

Looking at accident statistics one finds that the majority of accidents are
caused or increased in severity by driver errors. The Indiana Tri-Level Study
(Treat et al. 1979) found driver errors to be a cause or severity-increasing
factor in 93% of the accidents. Furthermore 27% of all accidents (USA 1997)
were frontal collisions where the struck vehicles were hit from behind (often
called rear-end collisions). The traditional way of protecting the driver is
to improve the vehicles passive safety i.e. body structural design, airbags
etc. Todays sensor and signal processing technology allows us to create sys-
tems that can compensate for driver errors by means of for example warnings
and/or brake-actuation. Forward looking systems will mainly affect frontal
collision (which as indicated above is a major part of all collisions occurring).
The purpose of forward collision avoidance systems is to avoid or mitigate
collisions that occur in front of the vehicle carrying the system. There are
many countermeasures that could be considered for this purpose. Examples
of countermeasures are warning signals to the driver, braking interventions,
steering interventions, pre tensioning of seat belt etc. The performance of
the decision making algorithm is crucial i.e. ”faulty” interventions are not
allowed (especially when one is considering active take over functions such
as braking and steering interventions). Many algorithms suggest to use mea-
sures such as time to collision, relative speeds and distances for decision
making. These measures although intuitively easy to understand, might be
difficult to use for complex driving situations. The problem that has to be
solved when constructing a collision avoidance system is to try to find laws
or decision-making rules for when to deploy the collision avoidance coun-
termeasure. The decision must be correct and robust in all types of traffic
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situations. There are two desired properties on a collision avoidance system:

1. Avoid all collisions

2. No faulty interventions are allowed. A collision avoidance system should
not react except when it is really necessary to do so, otherwise it will
be perceived as a nuisance to the user.

These two properties are in contradiction and the decision making algo-
rithm has to be a good trade off between them. How this tradeoff should be
done depends on several factors. One of the major factors is what type of
countermeasure will be used.

In this project, a framework for how to deal with risk estimation and
decision making for general driving situations are presented. Specifically we
discuss how to deal with measurement uncertainties and driver behavior. We
will in more detail discuss issues of autonomous braking actuation i.e Colli-
sion Mitigation by Braking (CMBB). We will also discuss the best possible
performance that can be achieved by a CMBB system and what performance
to expect when using commercially available sensors. Performance of a sys-
tem using the proposed method will be exemplified with simulation results
as well as results from test drives with a demonstrator car equipped with a
collision mitigation by braking system.

The research is documented in a patent application, one SAE paper [77]
and one IFAC World Congress paper [78].

Figure 5.5: The CMBB system is evaluated in a Volvo V70 in collisions with
the inflatable car on the picture.
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5.5 Performance analysis of laser radar sys-

tems

This project concerns performance analysis of estimation algorithms based
on data from a generic laser radar system. A tool in this work is modelling of
different kinds of laser radar systems and the kind of data that they produce.
The measurement system (i.e., laser radar system) model contains several de-
sign parameters, which makes it possible to test an estimation scheme under
different types of system design. The measurement system model includes
laser characteristics, object geometry, reflection, speckles, atmospheric atten-
uation, turbulence and a direct detection receiver. Thus, the data generation
is based on sound calculations of physical properties. Data is analyzed by
a general, parametric least squares method. There are measurement errors
present and therefore the parameter estimation is based on a measurement
error model. The parameter estimation accuracy is limited by the Cramer-
Rao lower bound (CRLB). Our goal with this work is to connect the design
parameters of a measurement system with a parametric description of an ob-
ject. This gives us a tool to evaluate the effects of the measurement system’s
design parameters on the result of the recognition algorithm.

In [73] we show the connection between the CRLB expression of a parame-
ter in the estimation method (θ) and the scan angle of the laser radar system
(α). After some calculations, see [73], we retrieve the CRLB as a function of
number of samples, measurement distance, R̂, and angle, α, uncertainties in
measurement distance and angle and the parameter estimated by the least
squares method, θ. A numerical illustration is shown in Figure 5.7, in this
case we have no bias.

5.6 Tire Pressure Monitoring

Event based sampling occurs when the time instants are measured every-
time the amplitude passes certain pre-defined levels. This is in contrast with
classical signal processing where the amplitude is measured at regular time
intervals. The signal processing problem is to separate the signal component
from noise in both amplitude and time domains. Event based sampling oc-
curs in a variety of applications. The purpose here is to explain the new types
of signal processing problems that occur, and identify the need for process-
ing in both the time and event domains. We focus on rotating axles, where
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Figure 5.7: CRLB as a function of scan angle α. The variance in the estimate
of θ increases when α increases. In this case we have no bias.
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amplitude disturbances are caused by vibrations and time disturbances from
measurement equipment. As one application, we examine tire pressure moni-
toring in cars where suppression of time disturbance is of utmost importance.
The project is described in the licentiate thesis [6] and the SAE paper [50].
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Figure 5.8: First plot: The toothed wheel measured the time for events,
where the measurements are the times to come to angle (event based sam-
pling) t[k] = t(k∆y), k = 1, 2, . . . , Nt rather than the angle at a specified
time (equidistant sampling) y[k] = y(k∆t), k = 1, 2, . . . , Ny. Second plot:
the angles are however not perfectly symmetric, and the plot shows the es-
timated angular error. Third plot: without estimation of the angular errors,
the estimated signal spectra is dominated by these disturbances. Fourth
plot: with compensation of angular errors, the spectra reveals in the infor-
mation of the resonance around 45 Hertz which is significant for tire pressure
monitoring.
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Chapter 6

Detection and Diagnosis

6.1 Fault Isolation in Control Systems with

Object Oriented Architecture

6.1.1 Introduction

Developing control systems for complex systems is a difficult and increasingly
important task. Large control systems have traditionally been developed us-
ing structured analysis and functional decomposition. Today, many large
systems are designed using an object oriented approach. This has several
advantages over traditional approaches, including better possibility to cope
with complexity and to facilitate maintenance and reuse. It leads to new
kinds of problems, though, and we concern ourselves with the problem of
fault propagation caused by an object oriented software architecture. As ba-
sic inspiration and case study we have used a commercial control system for
industrial robots developed by ABB Robotics; the system is highly config-
urable, programmable and has an object oriented architecture. More work
on industrial robots is described in Chapter 8.

Object-oriented design goals such as encapsulation and modularity often
stand in direct conflict with the need to generate concise information about
a fault situation, and to avoid propagating error messages. Error messages
are sent by individual objects to notify, e.g., an operator that an error con-
dition has been detected. The aim to encapsulate information implies that
individual objects, or groups of objects, in general do not know how close
they are to the fault or if the fault has already been adequately reported by
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another part of the system. When a fault situation occurs, e.g, a hardware
component failure, a broken communication link or a real-time fault, it is
not a very desirable system behavior to present a multitude of error mes-
sages from different parts of the system to an operator. For the operator,
who normally has no insight in the internal design of the control system, it
can be very difficult to understand which error message that is most relevant
and closest to the real fault. For objects that are close to each other it is
possible to suppress error messages by information passing, but this is not
always feasible.

There are two main objectives of our work: On the one hand we want to
devise a method that can be used for operator support. The aim is then to
single out the error message that explains the actual cause of the failure, or
possibly an unobservable critical event explaining the observations. We aim
to discard error messages which are definitely effects of other error messages,
while trying to isolate error messages (or critical events) which explain all
other messages. That is, we propose a fault handling scheme as an extra
layer between the operator and the core control system, performing post-
processing of the fault information from the system to achieve clear and
concise fault information to the operator, without violating encapsulation
and modularity. On the other hand, our method can also be used at design
time. At the design level, we want to find out, at design-time, if the error
log design is sufficient, that is, if enough error messages are produced to be
able to isolate all faults.

The fault isolation is done in two steps. In the first phase a structural
model fault isolation is done, and in a second phase a behavioral model
fault isolation is used only if needed. If the structural model fault isolation
is successful in finding a single cause of all the error messages, the second
phase of behavioral model fault isolation is not needed.

The structural model is represented mainly by the class diagrams in UML
(unified Modeling Language). The main advantage with using a software
engineering model is that it can be developed and maintained at a relatively
low cost as it is an integrated part of the software development process. From
the error messages in the error log we can find the cause-effect relation be-
tween the error messages. If there is no unique maximal element initially, we
use the UML model, in particular the class diagrams, to extend the origi-
nal graph. A prototype implementation of the structural approach has been
made and tested on the ABB Robotics industrial robot control system.
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6.1.2 Behavioral fault isolation

Since the structural model thus is an abstraction of all possible behaviors, it
is not unlikely to have circular dependencies in the structural model without
ever having circular dependencies in any specific scenario. When such a
circular dependency occurs in the explanation graph the structural model is
not sufficient to perform successful fault isolation, but having a behavioral
model of the objects involved in the cycle we may be able to break the
cycle. A dependency in the structural model, say class A depends on class
B, means that there exists a scenario where an instance of class A depends on
an instance of class B. It is not possible to deduce whether the dependency
holds in the scenario at hand or not, since the model does not discriminate
between different scenarios. By modeling also the behavior of the objects
we get the opportunity to reason about dependencies that hold only under
certain circumstances, i.e. in certain scenarios.

When starting behavioral model fault isolation we have a limited set of
root candidates, i.e. events in the scenario that are suspected to have caused
the failure of the system. This set is an output from the structural model
fault isolation.

Our main focus lately has been to extend the structural approach to fault
isolation using behavioral methods -more precisely we use UML state machines
as notation for the behavioral model- and class instances rather than classes.
We use the concept of strong root candidate. A strong root candidate is an
event that is known to have occurred, and there is a run (consistent with the
log) where this event is the first critical event.

We propose an approach to fault isolation based on model checking to
locate strong root candidates (if they exist!)[42, 44, 111]. The property of
being a strong root candidate is then expressed in the temporal logic CTL
(normally used for verification). And we use an existing model checker to
single out the strong root candidates.

6.2 Fault detection and diagnosis in process

control systems

This project is carried out by in cooperation with ABB Automation Systems
and ABB Corporate Research. The aim is to study and develop methods for
detection and diagnosis in process control applications.
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This project focuses on fault detection and diagnosis in pulp and paper
processes. Typical characteristics of these systems are that they are large
systems with a large number of signals/sensors, and the physical models are
of limited accuracy.

We investigate how to make a model of a system with a large number of
signals, where furthermore only a small part of the signal space contains data
under normal operations. PCA, principal component analysis is a promising
method for this, where singular value decomposition is used to find the rele-
vant parts of the signal space. The PCA model can then be used to compare
measured process output with model output, and compute a test statistic,
which will differ from zero when a fault has occurred.

Once a fault is detected, the next step in the fault detection and diagnosis
is to find the faulty sensor. Using a probabilistic approach we can minimize
the misclassification.

PCA has usually been employed for static systems, and for certain sampling
rates, the pulp and paper process can be regarded as such. It is however also
interesting to include dynamic information into the model, i.e., by including
delayed versions of the signals in the regressor. This is known as dynamic
PCA, dPCA, and closely related to subspace methods.

6.3 Fault identifiability of additive faults in

linear systems

The parity space approach to fault detection is an elegant and general tool for
additive faults in linear systems and is based on intuitively simple algebraic
projections and geometry. It provides a tool to compute a residual vector that
is zero when there is no fault in the system and reacts to different faults in
different patterns, enabling a simple algorithm for diagnosis (deciding which
fault actually occurred). Examples on simulated data often show very good
results. Consider for instance Figure 6.1, where a DC motor is subject to
first an offset in control input and then an offset in velocity sensor.

The upper plot shows how structured parity space residuals correctly point
out which fault has occurred. A main drawback is that the approach does not
take measurement errors and state noise into consideration as in the classical
Kalman filter literature. The lower plot in Figure 6.1 illustrates the high
sensitivity to even quite a small measurement noise.
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Figure 6.1: Parity space residual for a DC motor, as described in Section
??, subject to first a input voltage offset and then a sensor offset. The two
residuals are designed to be non-zero for only one fault each. The lower
plot illustrates extremely high sensitivity in residuals to measurement noise
(SNR=221).

We here mix the linear state space models used in fault detection and
Kalman filtering, treating deterministic and stochastic disturbances in dif-
ferent ways.

In the paper [75], an explicit expression for P i,j = P (diagnosis j| fault i) is
given for any parity space, and the parity space is optimally designed to min-
imize these probabilities in order to improve sensitivity issues in diagnosis.
The approach relies on spatial and temporal whitening of the parity space
residuals. Practically, this means that each fault is mapped a mean residual
vector, and the stochastic contribution to the residual is independent of the
fault and adds to the residual as white noise with unit covariance matrix.
Figure 6.2 illustrates the principle for a sampled DC motor.

The normalization enables a simple characterization for the decision re-
gions for each fault isolation (straight lines in the residual space), and more
importantly a tool to compute the probability for incorrect fault isolation,
without resorting to Monte Carlo simulations. Figure 6.3 illustrates how one
design parameter in the parity space approach (the sliding window size) af-
fects this probability. Other applications are sensor localization and quality
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specification, system design and so on.
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Chapter 7

Communication Applications

7.1 Introduction

The global communications system today (the telephone system yesterday)
is considered as the largest man-made system all categories. Due to the
dramatic increase in number of users and their demand for more advanced
services, the available resources have to be utilized efficiently. This is espe-
cially critical in the subset of wireless cellular communications systems, and
in applications which require specific real-time behavior. The four projects
are rather independent, but can to some extent all be related to the exem-
plifying wireless network in Figure 7.1.

Signal Processing for Analog to Digital Converters (ADC) With
adequate signal processing, it is possible to significantly improve analog to
digital converters. This is important for cheaper and more accurate radio
receivers and to effectivice the individual links.

Power Control in Cellular Radio Systems Power control is an im-
portant means to compensate for variations in propagation conditions and
interference and to utilize the radio resources efficiently. Thereby, sufficient
power is used by each transmitter to maintain an acceptable quality of service,
while not disturbing other connections unnecessarily much. Both control de-
sign and analysis aspects are considered of such distributed algorithms.
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Figure 7.1: Downlink communications in a wireless network. The received
signal at the mobile station consists of the desired signal (solid), interfering
signals from other base stations (dashed) and thermal noise.

Uplink Load Estimation and Management Power control is not an ef-
ficient means for resource utilization if the system is overloaded. Therefore,
it is important to manage the system load. Uplink load estimation is central
due to the limited availability of accurate measurements. Furthermore, ad-
mission, congestion and other resource control are important tools to prevent
the system from becoming overloaded.

Control, Fault Detection and Estimation in Data Networks Traffic
flow control is well established in data communications. With mobile Internet
becoming increasingly popular, it is important to consider these algorithms
while cater for efficient utilization of the wireless links. Considered perfor-
mance aspects are similar when discussing solely wired communications.

7.2 Signal Processing for Analog to Digital

Converters (ADC)

Much of the physical space and power consumption in modern communica-
tion systems such as ADSL modems, cellular phones and radio base stations
are due to the radio frequency signal processing. A very fast A/D converter
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could, in principle, be put directly to the antenna or at least closer to the
antenna than today, and much more of the signal processing could be per-
formed in software. This requires A/D converters with very high linearity to
distinguish a weak signal from the harmonics from stronger signals.

7.2.1 Blind Equalization of Static Errors in SA-ADC
and pipelined ADC

For fast high performance A/D conversion, pipelined or subranged successive
approximation A/D converters (SA-ADC) are the best options. These A/D
converters consist basically of a resistance ladder, where the voltage level
between the resistances gives the digital reference levels. The correct digital
level is found by comparing the analog input signal to these reference volt-
ages, by binary search. Using only one resistance ladder, 2N resistances are
required to achieve N bits precision in the ADC. Pipelining or subranging is
used to avoid too long resistance ladders. For these types of ADCs the com-
parison is split into two or more resistance ladders. The most significant bits
are found from the first resistance ladder. When the correct level is found in
the first ladder, another resistance ladder is fit into the correct interval in the
first ladder, where the search is continued and less significant bits are found.
In Figure 7.2 an example of a two stage subranging SA-ADC is shown. To

SH

resistance ladder 1 resistance ladder 2

electrical connection

comparator

Figure 7.2: Two stage subranging SA-ADC. The conversion is done in two
steps with two resistance ladders.

keep the power consumption and price at low levels, CMOS technology is
used. One major problem is manufacturing errors leading to large uncertain-
ties in the components. Due to errors in the resistances the distance between
different reference levels in the resistance ladder are different, which means
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that the nominal digital reference levels do not correspond to the actual levels
in the A/D converter. If the correct levels are known, these can be used to
construct the digital signal instead of the nominal, equally spaced, reference
levels. Here we have developed a patented method to adaptively and blindly
compensate for the distortion with an algorithm suitable for implementation
on the chip. We need only a spatial smoothness assumption on the input
signal for this algorithm to work.

7.2.2 Adaptive Estimation of Amplitude, Gain and Tim-
ing Offsets in Parallel ADC’s

One way of improving the speed of A/D conversion is to put M A/D convert-
ers in parallel. All the A/D converters have the same input signal but the
clock signal is delayed with iT/M , where T is the sampling interval of one
ADC. The outputs are then multiplexed to one signal with M times higher
sample rate than the separate ADCs, see Figure 7.3. Due to this parallel,
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Figure 7.3: M parallel ADCs with the same master clock.

time interleaved setup, three types of errors occur:

• Time errors (static jitter)
The delay time of the clock to the different A/D converters is not equal.
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This means that the signal will be periodically but non-uniformly sam-
pled.

• Amplitude offset errors
The ground level can be slightly different in the different A/D convert-
ers. This means that there is a constant amplitude offset in each A/D
converter.

• Gain error
The gain, from analog input to digital output, can be different for the
different A/D converters.

Here it is of utmost importance to compensate for gain, amplitude and time
offsets, otherwise fake components in the frequency spectrum will appear.
Here a patented blind adaptive algorithm for estimation of time errors has
been developed. The algorithm requires no information about the input
signal, except temporal smoothness. The method is analyzed in [45]. The al-
gorithm has also been evaluated on measurements from a dual A/D converter
system [46].

7.2.3 Randomly interleaved ADCs

Another way to decrease the impact of mismatch errors in time interleaved
ADCs is to randomize the selection order of the ADCs. By doing this the
mismatch errors give a more noise-like shape in the output spectrum. This
means that the SFDR is improved while the SNDR is the same. A statistical
model for this type of system has been developed. This model has also been
compared to measurements from a real randomly interleaved ADC system.

Jonas Elbornsson and Fredrik Gustafsson are working in this project, see
also the project description.

7.3 Power Control in Cellular Radio Systems

When a user is requesting a service from the cellular system, a radio link
has to be established. First the appropriate base station to connect to is
determined. The requested service corresponds to a specific data rate, and
therefore a channel that can provided this data rate is allocated. Most things
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in the system are time-varying: mobiles move, users come and go, propaga-
tion condition varies etc. Closed-loop transmission power control is widely
discussed as a means to compensate for the variations.

Since several connections are using the same channel, a signal intended
for a certain user will reach other users as well, see Figure 7.1. This creates
mutual interfering signals between the users and limit the performance.

For practical reasons, the powers have to be computed locally for each
connection using local feedback, though performance and stability depend
on how the different connections interact. We consider the power control
problem as a decentralized control system, consisting of interconnected local
control loops. Each connection controls the powers to obtain a sufficient
signal-to-interference ratio (SIR) γ, which is the useful received power C
divided by the harmful power, or interference power I (including thermal
noise). In dB, SIR γdB = CdB − IdB. The reference values, typically referred
to as target SIR:s, are denoted by γt. Hence, the challenge is to locally
control the transmission powers using feedback of the control error γt−γdB(t)
to maintain an acceptable perceived connection quality.

Properties like stability and convergence are typical global properties re-
lated to the overall wireless network with mutual interference between the
connections. While it is desirable to design and use the controllers locally,
global stability results also have to be provided. It is easy to conclude that
local stability is a necessary but not sufficient condition for global stability
of the power control problem.

By analyzing power control from a control theory perspective, the following
limitations are important:

• Not every user requirements can be supported by the system in terms
of data rate.

• In practical cases the power can only be controlled based on local mea-
surements and estimates.

• Measuring, estimation and control signaling takes time, which result
in time delays in the system. Essentially, there is a trade-off between
estimation accuracy and the presence of time delays.

• The measurements and/or control signals have to be transmitted over
the radio interface. Since the available radio resources are limited, so
is the feedback bandwidth. Moreover, the feedback channel may be
subject to signaling errors resulting in feedback errors.
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• The output power levels are limited to a given set of values due to
hardware constraints. This includes quantization and saturation.

• The ability to mitigate time-varying disturbances are most naturally
discussed in the frequency domain. An interesting issue is to address
the performance in terms of the disturbance rejection bandwidth.

• Quality of Service is a very subjective quantity, and the choice of ade-
quate quality measures is an important issue.

• Even if the optimal quality measure is found, this will most likely not be
possible to measure. Thus it is important to extract as much relevant
information from the available measurements.

These aspects are further discussed in the survey article [20].
Fredrik Gunnarsson is working on the project, which is a collaboration

with Ericsson Radio Systems, Linköping and Kista.

7.4 Uplink Load Estimation and Management

When operating a cellular radio system at nearly full capacity, admitting yet
another user may jeopardize the stability of the system as well as the perfor-
mance of the individual users. Therefore, proper radio resource management
is crucial. It is natural to base such management on a measure of the current
load situation. This project aims at methods for estimating and managing
the uplink load.

Prior art includes measures related to absolute number of users served by
the base station and measures of the total received power at the base station
I tot
j . Both show promising results, but the former is difficult to configure,

and the latter is based on a quantity, which is hard to measure accurately.
Instead, the relative load of a base station is defined by

Lj = 1 − Nj

I tot
j

⇐⇒ I tot
j =

Nj

1 − Lj

(7.1)

where Nj is the thermal noise power. Clearly, the relative load Lj = 0
corresponds to an unloaded base station (the received power is only thermal
noise). Furthermore Lj = 1 constitutes an upper limit since it corresponds to
an infinite received power. The proposed uplink relative load estimate [26, 40]
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is focused on WCDMA. It utilizes measurements readily available in that
system, either periodically scheduled or from handover events. Initially, it
is utilized in admission control, and it is easy to configure, and provides
the possibility to predict the uplink load given that a specific user would be
admitted in the system.

Furthermore, multi-services are naturally handled, and availability of high
data-rate services are automatically limited with respect to coverage, com-
pared to services of lower data-rate. This is illustrated by Figure 7.4, where
the 192 kbps service is only available relatively close to the base stations
(where users have higher power gains), while the speech service is available
essentially everywhere.
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Figure 7.4: Histograms of power gains for admitted users with the services:
12.2 kbps (thick line) and 192 kbps (thin line).

Erik Geijer Lundin, Fredrik Gunnarsson and Fredrik Gustafsson are work-
ing in this project, which is an ISIS project in cooperation with Ericsson
Research.

7.5 Control, Fault Detection and Estimation

in Data Networks

The core problem is that the standardized flow control implementations used
in data networks are not designed for the traffic situations of today, and
that it is next to impossible to upgrade the software in all Internet routers.
However, some networks are redesigned, and IP is used in new and closed
environments, such as transport networks between base stations in cellular

50



radio systems. Therefore, it is plausible to discuss alternative traffic con-
trol algorithms and protocols. Furthermore, not only the data flow of each
user is controlled, but also the total flows through each router to prevent
overload situations. The total system can hence be seen as a complicated
distributed control system with complex inter-connections between the con-
trol algorithms.

The main flow control protocol on the Internet is TCP. A protocol is a set of
rules that organizes a part of the traffic and TCP organizes the send rate and
the sequence of data. Using an addition to the data packets TCP can keep
track of the correct order of the packets and also notice if a packets are lost.
This information gives an indication about the capacity of the network and
TCP keeps an internal estimate of this capacity. The estimate is increased
when a packet is delivered successfully and decreased if the packets is lost.
The way of increasing and decreasing was standardized at the birth of the
Internet and therefore TCP is not so well suited for todays traffic scenario.

An investigation of the performance of TCP has been done in [63, 72],
where the occupation of the queue is used as the primary performance mea-
sure. Here a simulation model developed using simulink and stateflow is
used, as well as the more complex network simulator developed at Berkeley,
ns-2. A small ns-2 simulation scenario is depicted in Figure 7.5.

Until now mainly heuristic methods have been used in the communication
world to tune parameters and choose algorithms. There is a need for models
that fit into existing frameworks such as control theory, probability theory
and optimization theory.

Current work is developing a model of the network load when using TCP
traffic and use this to find a good controller of the load. The aim is to
use known control theory concepts and techniques. An investigation is car-
ried out concerning performance measures and adaptive queue management
techniques for this purpose.

Frida Gunnarsson, Fredrik Gunnarsson and Fredrik Gustafsson are working
in this project.
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Figure 7.5: A ns-2 simulation scenario with n file senders, fsi, with corre-
sponding file receivers, fri, and m web servers, wsi, with corresponding web
clients, wci.
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Chapter 8

Robotic Applications

8.1 Introduction

This work is to a large extent carried out in cooperation with ABB Robotics
within the competence center ISIS (Information Systems for Industrial Con-
trol and Supervision). The overall aim of the work is to study and develop
methods for improvement of the performance of robot control systems.

8.2 Iterative Learning Control

Iterative learning control (ILC) has been an active field of research since
the mid 80’s. The method uses the fact that if a systems perform the same
action repeatedly and has a deterministic behavior the error will also contain
a component that is repeated. By using the error from previous “iterations”
of the same action the error can be reduced. The structure of the problem is
shown in Figure 8.1 where the output of the ILC algorithm is uk+1(t) defined
for 0 ≤ t ≤ tf . Mathematically the algorithm can be formulated as

uk+1 = Q(uk + Lek)

where uk is an input to the controlled system and ek is a measure of the
control error. Q and L are operators that can be chosen by the user.

One important aspect that has been covered in 2002 is the effect of dis-
turbances on a system controlled with an ILC algorithm. This is covered in
[21], [23], and [16]. The contribution of [21] is to show how introducing a
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high-order ILC scheme according to

uk+1(t) = Hu,1uk(t) + . . . + Hu,Nuk−N+1(t)

+ He,1ek(t) + . . . + He,Nek−N+1(t)
(8.1)

can affect the disturbance rejection properties. In [23] and [16] iteration
varying filters in the update equation of the ILC algorithm is covered. The
convergence properties in time and frequency domain for linear systems is
covered in [19]. For non-linear systems some new results are presented in
[38]. An example where ILC is applied to a non-linear non-minimum phase
system is discussed and the design aspects are highlighted.

One approach to ILC that has given an increased attention during the last
few years is the Current Iteration Tracking Error (CITE) ILC. This approach
uses an updating equation according to

uk+1 = Q(uk + Lek+1)

that is a feedback loop in combination with an iterative update of the ILC
input. In [36] frequency domain conditions for the convergence of CITE ILC
algorithms are presented. A Bode’s integral theorem interpretation of the
convergence result is given and the restriction on the learning operators to
be causal is highlighted.

Experimental evidence of the ILC algorithms are presented in [16] and
in [17]. In [17] many different ILC algorithms are discussed and evaluated
in an experimental environment using an ABB IRB1400 industrial robot
manipulator.

+
+

-
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yk(t)uk(t)

{uk+1(t)}tf
0 r(t)ek(t)

Figure 8.1: An example of a system controlled using ILC.
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8.3 Robot Identification and Diagnosis

For both control and diagnosis of industrial robots it is important to have
good mathematical models describing the properties of the robot. This prob-
lem has been considered in [4], [35], and [39] from different viewpoints.

In [4] and [39] it is discussed how a software tool, in this case Modelica,
for physical modeling can be used for generating a suitable model structure
that can be used for identification. An example is given in Figure 8.2, which
shows a three-mass model used to describe the properties of a robot when
moving around axis one. For an example of this size the state space equations
can easily be derived by hand, but if the complexity is increased by adding
more masses it becomes tedious the handle the problem. In such a case a
tool like Modelica is very useful. Examples of how this tool can be used for
this task are shown in [4] and [39].

There are several methods available for diagnosis of industrial systems,
and the methods that have been considered here are based on recursive esti-
mation of physical parameters in an industrial robot. Also here the starting
point has been the three-mass model shown in Figure 8.2. To be able to
monitor physical parameters in real-time it is necessary to use a recursive
identification algorithm. This problem is discussed in [4] and [35], where
data collected from an ABB IRB1400 are used. Different diagnosis meth-
ods based on recursive estimates of some different physical parameters are
compared and evaluated.

τ ,θm

θaθg

Jm

Jg Ja

fm

kg, dg ka, da

r

Figure 8.2: Three-mass flexible model.
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Chapter 9

Optimization for Control and
Signal Processing

9.1 Introduction

The research in optimization for control and signal processing is currently
focused on efficient optimization algorithms for model predictive control and
for robustness analysis of control systems.

9.2 Model Predictive Control

Model Predictive Control (MPC) has proven to be very useful in process
control applications. Efficient optimization routines to be used on-line is an
active area of research. In [28, 89] it is shown how to efficiently solve an
optimal control problem with applications to model predictive control. The
objective is quadratic and the constraints can be both linear and quadratic.
The key to an efficient implementation is to rewrite the optimization problem
as a second order cone program. This can be done in many different ways.
However, done carefully, it is possible to use both very efficient scalings as
well as Riccati recursions for computing the search directions.

56



9.3 Gain-Scheduling

Gain scheduling is a very powerful control methodology for systems with
time varying parameters. The only requirement is that the process dynamics
can be predicted. Often, analysis of a system controlled by a gain scheduled
controller results in solving extremely large optimization problems involving
linear matrix inequalities (LMIs) as constraints. Standard algorithms for
solving these so called semidefinite programs (SDPs) cannot handle problems
of the size commonly encountered in applications. However, the LMIs have a
very special structure. If this structure is exploited and is combined with an
interior-point method for solving the SDP a very efficient algorithm results,
[29]
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Appendix B
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M.Sc. (civ.ing.)-program
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turer: Svante Gunnarsson.
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Hansson.
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System Identification, Nonlinear systems, Signal processing. 20 partic-
ipants. Lecturer: Svante Gunnarsson.

• Digital Signal Processing (Digital Signalbehandling). For the Applied
Physics and Electrical Engineering and Computer Science and Engi-
neering Programs. Spectral analysis, Filtering, Signal Modeling, Wiener
and Kalman filtering, Adaptive filters. 60 participants. Lecturer:
Fredrik Gustafsson.

• Modelling and Simulation (Modellbygge och Simulering). For the Ap-
plied Physics and Electrical Engineering program. Physical system
modelling, Bond graphs, Identification methods, Simulation. 65 par-
ticipants. Lecturer: Torkel Glad.

• Digital Control (Digital Styrning). For the Applied Physics and Elec-
trical Engineering, Computer Science and Engineering and Industrial
Engineering and Management Programs. Numerical control, binary
control and PLCS, process computers and applications of digital pro-
cess control. 70 participants. Lecturer: Inger Klein.

• Real Time Process Control (Realtidsprocesser och reglering). For the
Information Technology Program. Real time systems. PID control. 25
participants. Lecturer: Inger Klein.

• Linear Feedback Systems (Återkopplade linjära system). For the Infor-
mation Technology Program. Linear systems, controllability, observ-
ability, feedback control. 25 participants. Lecturer: Inger Klein.

• Control Project Laboratory (Reglerteknisk projektkurs) For the Ap-
plied Physics and Electrical Engineering and Computer Science and
Engineering Programs, Modelling and identification of laboratory pro-
cesses, Controller design and implementation, 20 Participants. Lec-
turer: Anders Hansson.
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• Introduction to MATLAB (Introduktionskurs i MATLAB). Available
for several Engineering Programs. 1200 Participants. Lecturer: Fredrik
Gustafsson.

• Project work (Ingenjörsprojekt Y). Develop an understanding of what
engineering is all about and how the work is performed. - Adminis-
tration, planning, communication, documentation and presentation of
project work, 24 Participants. Lecturer: Svante Gunnarsson and Kent
Hartman.

• Perspectives to computer technology (Perspektiv p̊a datateknik). Project
work with focus on computer technology, 12 Participants. Lecturer:
Kent Hartman.

B.Sc. (tekn.kand.) - program

• Automatic control, EI (Electrical Engineering) 5 units, 35 participants.
Contents: Dynamical systems, the feedback principle, frequency do-
main analysis and design of control systems, robustness and sensitivity
of control systems, sampling, implementation, some examples of nonlin-
earities in control systems. Simulation of dynamic systems. Lecturer:
Kent Hartman.

• Automatic control, advanced course, EI 2 units, 35 participants. Con-
tents: Sequential control and logic controllers. A typical industrial
control system. Lecturer: Kent Hartman.

• Automatic control, MI/KI (Mechanical Engineering and Chemical En-
gineering) 4 units, 90 participants. Contents: Sequential control and
logic controllers. Fundamentals of automatic control, dynamical sys-
tems, feedback, differential equations, frequency analysis, Bode plots,
stability, simple controllers, sampling, implementation, simulation of
dynamic systems. Lecturer: Anna Hagenblad.

B.2 Graduate Courses

• Adanced Issues in Non-parametric Signal Processing. Lecturer Gustafs-
son. Literature: Various articles and book chapters.
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• Linear Systems. Lecturer Torkel Glad. Literature: Wilson J. Rugh,
Linear System Theory, Prentice Hall, 1996., T. Kailath: Linear Sys-
tems. Prentice Hall 1980

• System Identification. Lecturer Lennart Ljung. Literature: L. Ljung:
System Identification: Theory for the User. Prentice Hall 1999, 2nd
ed.

• Convex Optimization for Control. Lecturer Anders Hansson. Litera-
ture: S. Boyd and L. Vandenberghe: Convex Optimization, manuscript
of forthcoming book, 2002.
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Appendix C

Computers and Laboratory
Equipment

The Automatic Control group uses an Ethernet based computer network
with Sun Microsystems workstations and Postscript laser printers in their
daily work. The group also has 11 Intel-based laptop computers. In the
laboratory, mainly used by students in the different courses, there are a
lot of different processes and 19 Intel-based computers for measurement and
control. The students also got 24-hours access to 64 Sun Ultra 10 workstation
in an Ethernet based computer network.

Comments and questions on the equipment can be directed to Joakim
Svensén.

The computer network at the Division of Automatic Control consists of
the following components.

• An Ethernet based 100baseT TCP/IP network

• 1 Sun SPARCserver 10 (2*2 hyperSPARC)

• 24 Sunblade 100

• 8 Sun Ultra 10

• 4 Sun Ultra 1

• 2 Dell OptiPlex PC:s

• 1 HP LaserJet 4 Si/MX Postscript laser printer
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• 1 HP LaserJet 8100DN Postscript laser printer

• 1 HP ColorJet Postscript laser printer

• 1 HP LaserJet 5 MPPostscript laser printer

• 1 Tektronix Phaser 350 solid ink-jet color printer

The Sun workstations run Solaris 2.8 and CDE (Common Desktop Envi-
ronment). The software used in this network is mainly for advanced calcu-
lations and documenting. Among the mathematical programs are Matlab,
Maple, Mathematica, 20sim, MathModelica, MATRIXx, Macsyma and Ax-
iom. The system mainly used for preparing documents is TEXand LATEX.
Accompanying programs such as xdvi, dvips and ghostview are also avail-
able. Write, Draw, Paint, Equation and Table from IslandGraphics, Inc.,
The Publisher from ArborText, Inc. and FrameMaker from Frame Corpo-
ration are other document handling packages that the network offers. The
public services available (e.g. anonymous ftp areas, mail server and WWW)
are described in Section 2 of this report.

The laptop computers are:

• 7 Dell Latitude (Pentium,Pentium II and Pentium III of various speed)

• 1 Acer TravelMate 516TE

In the laboratory the following processes and computers are used:

• 16 AC and DC servo systems, Feedback MS150

• 5 hot air processes, Feedback PT326

• 9 simple tank processes

• 5 double tank processes

• 6 modular systems with simulated processes, PID-Lead/lag compensa-
tion, and time discrete controllers

• 2 inverted pendulum processes

• 1 bandmachine process
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• 1 air-driven generator plant

• 1 air-driven steam generator

• 1 coupled tanks process, Tecquipment CE5

• 1 ball and beam process, Tecquipment CE6

• 1 ball and hoop process, Tecquipment CE9

• 1 coupled drives process, Tecquipment CE108

• 3 Lego processes for sequential control

• 1 helicopter-like process

• 2 wind meter processes from Chalmers Institute of Technology

• 6 Dell Workstation 400

• 8 Network Crimson single Pentium III with dSPACE signal processing
cards

• 3 Dell Workstation 340

• 2 Dell Workstation 220 with Allan Bradley SLC500 PLC system

• 1 LEO 386 computers with Metrabyte Dash 16 interfaces (A/D, D/A
and digital I/O).

• 1 HP LaserJet 4 MP laser printer
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Appendix D

Seminars

• Various Aspects of Monte Carlo Methods In Target Tracking. Yvo
Boers, THALES NEDERLAND B.V, February 14, 2002.

• Estimation and optimization in the set membership approach. Anto-
nio Vicino, University of Siena, Italy, February 21, 2002.

• Issues on the SIC scheme in DS/CDMA systems. Chiho Lee, K-JIST,
Korea, March 7, 2002.

• Undetectable flight paths Jörgen Blomvall, Department of Mathe-
matics, Linköpings universitet, March 14, 2002.

• Subspace Approach to Fault Identification via Reconstruction. Joe
Qin, University of Texas, March 19, 2002.

• Tree-aided Classifiers Minimizing Stochastic Complexity. Timo Koski,
Deparment of Mathematics, Linköpings universitet, April 4, 2002.

• Discrete Execution Monitoring of Industrial Process Controllers. Mar-
cus Bjäreland, Department of Computer and Information Science,
Linköpings universitet, April 18, 2002.

• Optimal Telecommunication Network Design. Kaj Holmberg, De-
partment of Mathematics, Linköpings universitet, April 25, 2002.

• Tracking and Data Fusion Research at QinetiQ. Neil Gordon, Qine-
tiQ, UK, May 22, 2002.
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• Mixed time/frequency domain based robust identification. Pablo Par-
illo, ETH, Zurich, June 3, 2002.

• Sums of squares and convex optimization. Pablo Parillo, ETH, Zurich,
June 5, 2002.

• Symmetries in Semidefinite Programming. Pablo Parillo, ETH, Zurich,
June 6, 2002.

• An Introduction to Integral Quadratic Constraints. Ulf Jönsson,
Royal Institute of Technology, June 12, 2002.

• Learning Curves for LMS. Paul Hriljac, Embry-Riddle Aeronautical
University, USA, September 12, 2002.

• Linear Models for Nonlinear Systems. Pertti Mäkilä, Tampere Uni-
versity of Technology, September 19, 2002.

• Simultaneeous Routing and Resource Allocation in Wireless Data Net-
works. Mikael Johansson, Royal Institute of Technology, Otcober
10, 2002.

• Industriella reglerregler. Jonas Öhr, Uppsala University, October 31,
2002.

• Virtual Surgery. Eva Skarman, Melerit AB, Noveber 14, 2002.

• On dynamic systems identification using closed-loop observations. Ri-
mantas Pupeikis, Vilnius Gediminas Technical University, November
21, 2002.

• Applications of Time-Frequency Analysis to Radar and Sonar Signal
Analysis. Hans Strifors, FOI, Linköping, December 12, 2002.
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Appendix E

Travel and Conferences

Jonas Elbornsson participated in the International Conference on Signal and
Speech Processing (ICASSP), Orlando, May, 2002 and the International
Symposium on Circuits and Systems (ISCAS), Phoenix, May 2002

Martin Enqvist participated in Reglermöte 2002 in Linköping, Sweden,
May 29-30, in the ERNSI Workshop on System Identification in Le Croisic,
France, September 23-25, in the Fourth Conference on Computer Science and
Systems Engineering in Linköping (CCSSE) in Norrköping, Sweden, October
23-24 and in the 41st IEEE Conference on Decision and Control in Las Vegas,
USA, December 10-13.

Erik Geijer Lundin participated at the International Conference on Com-
munication, New York, April 2002, RadioVetenskap och Kommunikation,
Stockholm, June, 2002, 8th Annual Swedish Workshop on Wireless Systems
2002, Vadstena, December, 2002

Markus Gerdin participated in the IFAC 15th World Congress, Barcelona,
July, 2002.

Joans Gillberg participated in Reglermöte2002, May 29-30, Linköping,
Sweden, the 25th Triennial World Congress of the International Federation
of Automatic Control, July 21-26, Barcelona, Spain and in Workshop on
semidefinite programming and its applications in control theory, combinato-
rial and global optimization, September 27, 2002, LAAS-CNRS, Toulouse,
France.

Fredrik Gunnarsson participated in the International Conference on Com-
munications, New York, NY, USA, April, 2002, RadioVetenskaplig Kon-
ferens, Stockholm, Sweden, June, 2002, IFAC World Congress, Barcelona,
Spain, July, 2002, and the Swedish Workshop on Wireless Systems, Vad-
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stena, Sweden, December, 2002.
Frida Gunnarsson participated in RadioVetenskap och Kommunikation,

Stockholm, May, 2002, the Conference on Computer science and Systems En-
gineering, Norrköping, October, 2002, and and the Wireless Systems Work-
shop, Vadstena, December, 2002.

Svante Gunnarsson participated in the 15th IFAC World Congress, Barcelona,
Spain, July 2002.

Fredrik Gustafsson participated in Svenska navigationsdagarna, Stock-
holm, April 24, Reglermöte, Linköping, May, 30-31, Swedish Radio Science
Conference (RVK’02), Stockholm, June, 10-13, International Federation of
Automatic Control (IFAC) World Congress, Barcelona, July 21-26, European
Signal Processing Conference (EUSIPCO’01), Toulouse, France, September
3-4, CCSSE’01 workshop, Norrköping, October 23, the French network ISIS’
workshop on particle filtering, Paris, France, December 2, A national work-
shop on Wireless Communication Systems, Vadstena, Sweden, December 4-5.

Anna Hagenblad participated in Reglermöte, Linköping, Sweden, May,
2002, and the ISIS Workshop, Linköping, Sweden, November, 2002.

Anders Hansson participated in SIAM Conference on Optimization, Toronto,
May, 2002, IFAC 15th World Congress, Barcelona, July, 2002, Workshop on
Semidefinite Programming and its Applications in Control Theory, Combi-
natorial and Global Optimization, Toulouse, September, 2002, and the 41st
IEEE Conference on Decision and Control, Las Vegas, December 2002. He
also visited the Swiss Federal Institute of Technology (ETH), Zurich, June,
2002, University of California, Los Angeles, December, 2002, and Stanford
University, Stanford, December, 2002.

Kent Hartman participated in TEKIT-dagen, April 18, Reglermöte 2002,
May 29-30, Konferens om college- och distansutbildning, September 20, CUL-
dagen November 11 and Tillgänglighet p̊a webben, December 12, all in
Linköping.

Ola Härkeg̊ard participated in Reglermöte, Linköping, May, 2002, the
AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey,
August, 2002, the fourth Conference on Computer Science and Systems En-
gineering in Linköping (CCSSE’02), Norrköping, October, 2002, and the 41st
IEEE Conference on Decision and Control (CDC’02), Las Vegas, December,
2002.

Inger Klein participated in the Thirteenth International Workshop on Prin-
ciples of Diagnosis (DX-02), Semmering, Austria, May, 2002.

Ingela Lind participated in the 15th IFAC World Congress in Barcelona,
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July, 2002.
David Lindgren participated in Reglermöte 2002 in Linköping, Sweden,

May 29-30, and in the International Conference on Trends in Monitoring
and Control of Life Science Applications in Lyngby, Denmark, October 7-
8, and in the 41st IEEE Conference on Decision and Control in Las Vegas,
Nevada, December 10-13.

Lennart Ljung visited INRIA January 14 -16 as a member of an evalua-
tion team. April 29 to May 3 he was at MIT, Cambridge and University of
Maryland, for the advisory committe meeting of the Institute for Systems
Research. He participated in REGLERMÖTE 2002 in Linköping, May 28 -
May 30, and in the International Symposium on Advanced Control of Indus-
trial Processes (ADCONIP) in Kumamoto, Japan, June 14 -17. He took part
in the Irish signals and Systems Conference (ISSC) 2002, on 25th-26th June
in Cork, Ireland, and the 15th IFAC World Congress, Barcelona, July 21 to
26. September 22 to 25 he participated in the ERNSI meeting in Le Croisic,
France, and November 15 - 16 he was at the Conference in honor of Anders
Lindquist’s 60th birthday in Stockholm. He took part in the Conference on
Decision and Control, CDC, in Las Vegas, Nevada, December 9 - 13.

Mikael Norrlöf participated in Reglermöte 2002, Linköping, Sweden, May,
2002, the 15th IFAC World Congress, Barcelona, July, 2002, and the 4th
Asian Control Conference (ASCC 2002), Singapore, September, 2002.

Niclas Persson participated in the Society of Automotive Engineers World
Congress, Detroit, March, 2002, the CCSSE, Norrköping, 2002.

Jacob Roll visited Università degli Studi di Siena, Italy, in April-May, 2002,
and participated in the IFAC World Congress, Barcelona, Spain, July, 2002,
the ERNSI Workshop, Le Croisic, France, September, 2002, and the IEEE
Conference on Decision and Control, Las Vegas, USA, December, 2002.

Ulla Salaneck participated in RadioVetenskap och Kommunikation, Stock-
holm, June, 2002 and in the ERNSI Workshop on System Identification in
Le Croisic, France, September 23-25.

Thomas Schön participated in the IFAC World Congress on Automatic
Control, Barcelona, July 2002, the ERNSI Workshop, Le Croisic, September
2002.

Fredrik Tjärnström participated in the international symposium on Ad-
vanced Control of Industrial Processes (AdCONIP), Kumamoto, Japan, June,
2002, the 15th IFAC World Congress, Barcelona, Spain, July 2002, the
11th ERNSI annual workshop, Le Croisic, France, September 2002, and the
4th Conference on Computer Science and Systems Engineering (CCSSE),
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Norrköping, Sweden, October, 2002.
Erik Wernholt participated in the ERNSI Workshop on System Identifica-

tion in Le Croisic, France, September 23-25.
Magnus Åkerblad participated in the IFAC 2002 World Congress, Barcelona,

July 2002, the Workshop on Semi-definite Programming, Toulouse, Septem-
ber 2002.

M̊ans Östring participated in Reglermöte 2002, Linköping, Sweden, May,
2002; International Symposium on Advanced Control of Industrial Processes
(AdCONIP), Kumamoto, Japan, June, 2002; the 15th IFAC World Congress,
Barcelona, July, 2002, and the 4th Asian Control Conference (ASCC 2002),
Singapore, September, 2002.
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Appendix F

Lectures by the Staff

• Jonas Elbornsson: Blind Equalization of Distortion in A/D Convert-
ers. Seminar at Department of Signals, Sensors and Systems, Royal
Institute of Technology (KTH), Stockholm, Sweden, January 29, 2002.

• Martin Enqvist: Estimating nonlinear systems in a neighborhood of
LTI-approximants, 41st IEEE Conference on Decision and Control, Las
Vegas, USA, December 10, 2002.

• Frida Gunnarsson: Communication and Control Lecture in CUGS
Communication Course, Norrköping, September, 2002

• Frida Gunnarsson: Issues on Performance Measurements of TCP CC-
SSE’02, Norrköping, October, 2002.

• Ola Härkeg̊ard: Dynamic control allocation for overactuated aircraft.
Reglermöte, Linköping, Sweden, May 30, 2002.

• Ola Härkeg̊ard: Dynamic control allocation using constrained quadratic
programming. AIAA Guidance, Navigation, and Control Conference
and Exhibit, Monterey, California, August 6, 2002.

• Ola Härkeg̊ard: Resolving actuator redundancy – Control allocation vs
linear quadratic regulation. CCSSE’02, Norrköping, Sweden, October
23, 2002.

• Ola Härkeg̊ard: Efficient active set algorithms for solving constrained
least squares problems in aircraft control allocation. 41st IEEE Con-

88



ference on Decision and Control, Las Vegas, Nevada, December 11,
2002.

• Ola Härkeg̊ard: Backstepping control of a rigid body. 41st IEEE Con-
ference on Decision and Control, Las Vegas, Nevada, December 13,
2002.

• Fredrik Gunnarsson: Uplink admission control in WCDMA based on
relative load estimates. International Conference on Communications,
New York, NY, USA, April 29, 2002.

• Fredrik Gunnarsson: Power Control in Wireless Communications Net-
works - from a Control Theory Perspective. IFAC World Congress,
Barcelona, Spain, July 24, 2002.

• Svante Gunnarsson: A simulation and animation tool for studying mul-
tivariable control. 15th IFAC World Congress, Barcelona, Spain, July
2002.

• Fredrik Gustafsson: Particle filter framework for navigation. Svenska
navigationsdagarna, Stockholm, Sweden, April 24, 2002.

• Fredrik Gustafsson: Stochastic fault diagnosability in parity spaces.
IFAC’02, Barcelona, Spain, July 23, 2002.

• Fredrik Gustafsson: Particle filter framework for target tracking. Work-
shop on tracking and target classification in networks, FOI, Linköping,
Sweden, August 27, 2002.

• Fredrik Gustafsson: Particle filtering framework for positioning in wire-
less networks. EUSIPCO’01, Toulouse, France, September 4, 2002.

• Fredrik Gustafsson: Particle filter for positioning in wireless networks.
The French network ISIS’ workshop on particle filtering, Paris, France,
December 2, 2002.

• Fredrik Gustafsson: Survey on positioning in wireless networks. Wire-
less Communication Systems Workshop, Vadstena, Sweden, December
5, 2002.
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• Anders Hansson: Efficient Solution of Semidefinite Programs for Anal-
ysis if Gain Scheduled Controllers. SIAM Conference on Optimization,
Toronto, Canada, May 20, 2002.

• Anders Hansson: Efficient Solution of Second Order Cone Program for
Model Predictive Control. Seminar at Automatic Control Laboratory,
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, June
14, 2002.

• Anders Hansson: A Primal-Dual Interior-Point Method for Robust Op-
timal Control of Linear Discrete-Time Systems. Seminar at Division of
Optimization, Linköpings universitet, Linköping, Sweden, September
25, 2002.

• Anders Hansson: Modellprediktiv reglering. Seminar at Swedish Re-
search Council, Stockholm, Sweden, November 20, 2002.

• Kent Hartman Utökad kontakt med regionens gymnasieskolor. Linköpings
universityet, May 15, 2002.

• Kent Hartman Bygga broar till ungdomsskolan. Anpassning till nya
och förändrade förkunskape. NORDTEK, nätverk för rektorerna vid
de 18 tekniska högskolorna i Norden. Ume̊a 17/6 2002.

• David Lindgren: Clustered Regression Analysis, 41st IEEE Conference
on Decision and Control, Las Vegas, USA, December 10, 2002.

• Lennart Ljung: Integrated Systems for Industrial control and Super-
vision: A VINNOVA Compentence Center Institute for Systems Re-
search, University of Maryland, MD, May 2, 2002.

• Lennart Ljung: System Identification and Simple Process Models, In-
ternational Symposium on Advanced Control of Industrial Processes
(ADCONIP), Kumamoto, Japan, June 11, 2002

• Lennart Ljung: From Data to Model: A status report on system iden-
tification, The Irish Signals and Systems Conference (ISSC’02), Cork,
Ireland, June 25, 2002

• Lennart Ljung; A course on system identification, Cork Institute of
Technology, Cork, Ireland, June 24, 2002
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• Lennart Ljung: Future challenges for system identification, the ERNSI
meeting, Le Croisic, France, Sept 23, 2002

• Lennart Ljung: Modeling and identification: Approaches and chal-
lenges, the ERNSI meeting, Le Croisic, France, Sept 24, 2002

• Lennart Ljung: Linear system identification as curve fitting, The An-
ders Lindquist Conference, KTH, Stockholm, November 16, 2002 cdc

• Lennart Ljung: Identification for Control: simple process models, The
41st IEEE Conference on Decision and Control, Las Vegas, NV, De-
cember 13, 2002

• Mikael Norrlöf: A General Framework for Iterative Learning Control.
15th IFAC World Congress, Barcelona, July 24, 2002.

• Mikael Norrlöf: Disturbance aspects of high order Iterative Learning
Control. 15th IFAC World Congress, Barcelona, July 25, 2002.

• Mikael Norrlöf: Ongoing activities in the ROBOTICS group at Linköpings
universitet. Seminar at the Department of Electrical and Computer
Engineering, National University of Singapore, Singapore, September
23, 2002.

• Mikael Norrlöf: Iterative Learning Control – in theory and practice.
Seminar at the School of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore, September 24, 2002.

• Mikael Norrlöf: Iteration varying filters in Iterative Learning Control.
4th Asian Control Conference, Singapore, September 27, 2002.

• Mikael Norrlöf: Some new results on Current Iteration Tracking Error
ILC. 4th Asian Control Conference, Singapore, September 27, 2002.

• Jacob Roll: A Direct Weight Optimization Approach to Local Mod-
elling. ERNSI Workshop, Le Croisic, France, September 23, 2002.

• Jacob Roll: A Non-Asymptotic Approach to Local Modelling. CC-
SSE’02, Norrköping, Sweden, October 23, 2002.

• Jacob Roll: A Non-Asymptotic Approach to Local Modelling. CDC’02,
Las Vegas, USA, December 11, 2002.
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• Fredrik Tjärnström: Variance properties of model reduction. Semi-
nar at Department of Signals, Sensors and Systems, Royal Institute of
Technology (KTH), Stockholm, Sweden, May 23, 2002.

• Fredrik Tjärnström: Modeling of industrial robot for identification,
monitoring, and control. AdCONIP’02, Kumamoto, Japan, June 9,
2002.

• Fredrik Tjärnström: Variance aspects of L2 model reduction when un-
dermodeling – the output error case. IFAC’02, Barcelona, Spain, July
26, 2002.

• Fredrik Tjärnström: Model reduction and system identification. ERNSI
Workshop 2002, Le Croisic, France, September 24, 2002.

• Magnus Åkerblad: Efficient solution of second order cone program for
model predictive control.

• Måns Östring: Modeling and identification of a mechanical industrial
manipulator. 15th IFAC World Congress, Barcelona, July 25, 2002.

• Måns Östring: Recursive identification of physical parameters in a flex-
ible robot arm. 4th Asian Control Conference, Singapore, September
27, 2002.
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Appendix G

Publications

PhD Theses

[1] Fredrik Tjärnström. Variance Expressions and Model Reduction in
System Identification. PhD thesis, Feb 2002.

Licentiate Theses

[2] Rickard Karlsson. Simulation based methods for target tracking. Tech-
nical Report Licentiate Thesis no. 930, Department of Electrical En-
gineering, Linköping University, SE-581 83 Linköping, Sweden, Feb
2002.

[3] Per-Johan Nordlund. Sequential monte carlo filters and integrated
navigation. Technical Report Licentiate Thesis no. 945, Department
of Electrical Engineering, Linköping University, SE-581 83 Linköping,
Sweden, May 2002.

[4] Måns Östring. Identification, diagnosis, and control of a flexible robot
arm. Technical Report Licentiate Thesis no. 948, Department of Elec-
trical Engineering, Linköping University, SE-581 83 Linköping, Swe-
den, Jun 2002.

[5] Claes Olsson. Active engine vibration isolation using feedback control.
Technical Report Licentiate Thesis no. 968, Department of Electrical
Engineering, Linköping University, SE-581 83 Linköping, Sweden, Aug
2002.
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[6] Niclas Persson. Event based sampling with application to spectral
estimation. Technical Report Licentiate Thesis no. 981, Department
of Electrical Engineering, Linköping University, SE-581 83 Linköping,
Sweden, Dec 2002.

[7] David Lindgren. Subspace selection techniques for classification prob-
lems. Technical Report Licentiate Thesis no. 995, Department of Elec-
trical Engineering, Linköping University, SE-581 83 Linköping, Swe-
den, Dec 2002.
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Journal Papers and Book Chapters

[8] Dietmar Bauer and Lennart Ljung. Some facts about the choice of the
weighting matrices in Larimore type of subspace algoithms. Automat-
ica, 38(5):763–774, May 2002.

[9] Krister Edström and Torkel Glad. Algorithmic, physically based mode
initialization when simulating hybrid systems. Journal of Systems and
Control Engineering, 216:65–72, Feb 2002.

[10] Wolfgang Reinelt, A. Garulli, and Lennart Ljung. Comparing different
approaches to model error modeling in robust identification. Automat-
ica, 38(5):787–803, May 2002.

[11] Fredrik Tjärnström and Lennart Ljung. Estimating the variance in case
of undermodeling using bootstrap. IEEE Trans. Automatic Control,
AC-47(2):395–398, Feb 2002.

[12] Lennart Ljung. Prediction error methods. Circuits, Systems and Signal
Processing, 21(1):11–21, Jan 2002.

[13] Lennart Ljung. Recursive identification algorithms. Circuits, Systems
and Signal Processing, 21(1):57–68, Jan 2002.

[14] A.V. Nazin and Lennart Ljung. Asymptotically optimal smoothing of
averaged lms estimates for regression parameter tracking. Automatica,
38(9):1287–1293, Aug 2002.

[15] V. Verdult, Lennart Ljung, and M. Verhaegen. Identification of com-
posite local linear state space models using a projected gradient search.
Int. Journal Control, 75(16/17):1385–1398, 2002.

[16] Mikael Norrlöf. An adaptive iterative learning control algorithm with
experiments on an industrial robot. IEEE Transactions on Robotics
and Automation, 18(2):245–251, Apr 2002.

[17] Mikael Norrlöf and Svante Gunnarsson. Experimental comparison of
some classical iterative learning control algorithms. IEEE Transactions
on Robotics and Automation, 18(4):636–641, Aug 2002.
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[18] Fredrik Tjärnström and Lennart Ljung. L-2 model reduction and vari-
ance reduction. Automatica, 38(9):1517–1530, Sep 2002.

[19] Mikael Norrlöf and Svante Gunnarsson. Time and frequency domain
convergence properties in iterative learning control. International Jour-
nal of Control, 75(14):1114–1126, 2002.

[20] Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, Urban Fors-
sell, Jonas Jansson, Rickard Karlsson, and Per-Johan Nordlund. Parti-
cle filters for positioning, navigation and tracking. IEEE Transactions
on Signal Processing, 50(2), Feb 2002.

Conference Papers

[21] Mikael Norrlöf and Svante Gunnarsson. Disturbance aspects of high
order iterative learning control. In Proceedings of the 15th IFAC World
Congress, Barcelona, Spain, Jul 2002.

[22] David Lindgren and Lennart Ljung. Clustered regression analysis. In
Proc. of the 41st IEEE Conference on Decision and Control, pages
1838–1844, Las Vegas, NV, Dec 2002.

[23] Mikael Norrlöf. Iteration varying filters in iterative learning control. In
Proceedings of the 4th Asian Control Conference (ASCC 2002), Singa-
pore, Singapore., Sep 2002.

[24] A.V. Nazin and Lennart Ljung. Asymptotically optimal smoothing of
averaged lms for regression parameter tracking. In Proc. of the 15th
IFAC Congress, Barcelona, Spain, July 2002.

[25] Fredrik Gunnarsson and Fredrik Gustafsson. Power control in wireless
communications networks - from a control theory perspective. In Proc.
IFAC World Congress, Barcelona, Spain, Jul 2002.

[26] Fredrik Gunnarsson, Erik Geijer Lundin, G. Bark, and N. Wiberg.
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289–291, May 2002.

[42] D. Lawesson, U. Nilsson, and Inger Klein. Fault isolation using pro-
cess algebra models. In 13th International Workshop on Principles of
Diagnosis (DX-02), pages 172–178, Semmering, Austria, May 2002.

[43] Rickard Karlsson. Various topics on angle-only tracking using particle
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[81] M.Östring and Svante Gunnarsson. Recursive identification of physical
parameters in a flexible robot arm. In Reglermöte, May 2002.
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[88] Martin Enqvist. Variance-bias tradeoff in finite impulse response esti-
mates obtained by correlation analysis. Technical Report LiTH-ISY-
R-2416, Department of Electrical Engineering, Linköping University,
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University, SE-581 83 Linköping, Sweden, Apr 2002.
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Modeling and identification of a mechanical industrial manipulator.
Technical Report LiTH-ISY-R-2437, Department of Electrical Engi-
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[121] Johan Dahlgren. Robust nonlinear control design for a missile using
backstepping. Master’s thesis, Department of Electrical Engineering,
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sity, 2002.

[143] Katarina Persson. Tcp/ip in tactical ad hoc networks. Master’s thesis,
Department of Electrical Engineering, Linköping University, 2002.
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