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Abstract

In this thesis the problem of time-delay estimation (TDE) in linear dynamic systems
is treated. The TDE is studied for signal-to-noise ratios, input signals, and systems
that are common in process industry. This also implies that both open-loop and
closed-loop cases are of interest. The true time-delay is estimated, which may
be different from the time-delay giving the best model approximation of the true
system. Time-delays which are not a multiple of the sampling interval are also of
interest to estimate.

In this thesis, a review and a classification according to underlying principles
of TDE methods in the literature are made. The main classes are: 1) Time-Delay
Approximation Methods: The time-delay is estimated from a relation (a model)
between the input and output signals expressed in a certain basis. The time-
delay is not an explicit parameter in the model. 2) Explicit Time-Delay Parameter
Methods: The time-delay is an explicit parameter in the model. 3) Area and
Moment Methods: The time-delay is estimated from certain integrals of the impulse
and step responses. 4) Higher Order Statistics Methods.

Some new methods and variants of old ones are suggested and evaluated, some
of which have good estimation performance and some poor performance. Prop-
erties of TDE methods are analyzed, both theoretically and experimentally. Rec-
ommendations are given on how to choose estimation method and input signal.
Generally, prediction error methods where the time-delay parameter is explicit and
is optimized simultaneously with the other model parameters give good estimation
quality.

Most evaluations have been conducted with factorial experiments using Monte
Carlo simulations in open and closed loop. Some statistical analysis methods have
been utilized: The RMS error of the time-delay estimates gives an absolute measure
of the performance. ANOVA (ANalysis Of VAriance) and confidence intervals give
conclusions with a certain level of confidence.
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v(t) The noise added to the output of the system (Equation 7.1 and Fig-
ure 7.5).

y(t) Output signal. It is also the estimated impulse or step response in
direct and CUSUM detection (Section 4.1.6).

ŷstd(t) Estimation of the standard deviation of the estimated impulse or step
response (Section 4.1.6 and Algorithm 2).

Z−1 {·} Inverse Z-transform.

Abbreviations and acronyms

ANOVA ANalysis of VAriance (Section 7.5.3)

ARX Auto Regressive model with eXtra input [Lju99].

CUSUM CUmulative SUM (Section 4.1.3).

DAP Discrete-time Allpass Part (Section 4.2.5).

LMS Least Mean Square [Gus00, GLM01].

OE Output Error model [Lju99].

PDF Probability density function.

PEM Prediction Error Method for system identification [Lju99].

SVD Singular Value Decomposition [HJ91].

TDE Time-Delay Estimation.

TIDEA TIme Delay Estimation Algorithm (Section 5.3.2).

zoh zero-order-hold sampling [ÅW84].
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1
Introduction

This chapter defines the problem that is treated in this thesis, states the purpose
with this work, lists the main contributions in and gives an outline of this thesis.

1.1 The Problem

In this thesis we will study the time-delay estimation (TDE) problem, where we
want to estimate Td in

y(t) = G(p)u(t) + n(t) = Gr(p)u(t− Td) + n(t), (1.1)

where the system Gr(p) is a SISO (single-input single-output) time-invariant linear
transfer function without time-delay. In signal processing applications, the system
is often restricted to be a constant [C+81, MG+98], but here Gr(p) will be a
transfer function with dynamics, of the type which typical in process industry, see
e.g. [IHD01b, Swa99]. This means that both the open-loop and closed-loop cases
are of interest and that we will study TDE for SNRs (signal-to-noise ratio), input
signals and systems, that are common in such applications.

We are only interested in the estimation of the time-delay. Some methods also
estimate the other parameters needed for a complete model of G(p). We consider
these other parameters as nuisance. When estimating the time-delay, the objective
can be either of the following two:

1. Estimate the best approximation time-delay , i.e. the time-delay estimate that
gives the “best” model approximation of the true system. What is “best”
depends on the intended use of the model and can be measured in many

3
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different ways. In automatic control, the time-delay estimate can be a means
to achieve a good model in the frequency band relevant to the control [Lju02,
FMS91], e.g. around the cross-over frequency. It is possible to choose the
frequency band where to achieve a good model by designing the input signal
spectrum and/or prefiltering the data [Lju99, Lju02]. In [Swa99] the apparent
time-delay (the delay resulting from identifying a first order model with time-
delay from the data) is used for control performance monitoring of PID control
loops.

2. Estimate the true time-delay (Td in Equation (1.1)). This is the case in “pure
time-delay” estimation, diagnosis, radar range estimation [KQ92, Sum95],
direction of arrival estimation with array antennas [HR97, Wik02, FHJ02],
measuring blood velocity [LT99], averaging of measured signals [GS94] etc.

Since we have not decided on a special use of the time-delay estimate, we will in
this thesis evaluate estimation methods according to the second objective.

We consider it as an advantage if a method can estimate time-delays that also
consist of fractions of the sampling interval. However, some methods can only
estimate time-delays that are a multiple of the sampling interval. Sometimes such
methods can be used to initialize other more “free” methods.

Time-delay estimation has been studied in the literature for a long time, espe-
cially for pure time-delay systems [C+81, Car87, Car93] but also for systems with

dynamics [ÅH95, CHWW99, EDE89, FMS91, Hor00, Isa97, KG81, Lju02, NL91,
Pup85, WZ01, Swa99, IHD01b, IHD00]. However, there is still no clear agreement
on which method is “best” for systems with dynamics.

1.2 Purpose

The purpose of this thesis is to:

1. Review and classify existing time-delay estimation methods for dynamics sys-
tems according to their underlying principles.

2. Try to find the “best” time-delay estimation method for dynamic systems for
different cases by comparing the quality of the estimates of methods using
simulated data.

1.3 Contributions

The main contributions of this thesis are

1. Statement of a general time-delay estimation problem in linear systems en-
compassing both automatic control and signal processing applications (Equa-
tion 2.1).
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2. Classification of existing time-delay estimation methods into classes with com-
mon principles and pointing out connections between the classes (Chapters 3-
6).

3. Serious comparison of several time-delay estimation methods using confidence
intervals and other methods on Monte Carlo simulated data to see which
method is the the best and which method to use in which case (Sections 8-9).

4. Properties of classes of methods from simulations.

5. Some theoretical properties of local minima for explicit time-delay parameter
methods using first order model with time-delay (Section 5.1.2).

6. Improvements and modifications of old and development of new time-delay
estimation methods:

(a) Zero guarding for making phase methods more robust (Section 4.2.7).

(b) The prefiltered Arxstruc method met1struc (Section 5.2.3).

(c) Exact time-delay from the sampling process (Section 5.3.3).

(d) CUSUM thresholding on impulse and step response estimates (Section
4.1.6).

(e) Area and moment methods on estimated step and impulse responses
instead of measured ones (Section 6.1-6.2).

(f) A cepstrum-like method for the separation of the time-delay from the
dynamics of a linear time-delay system (Section 4.1.4).

7. Development of a MATLAB toolbox for managing and analyzing data from
factorial experiments [Bjö]. Included in this is a method and a software
for evaluating performance of parameter estimation methods with the aid of
ANOVA and confidence intervals for pair-wise comparisons (Section 7.5).

8. Matlab implementation of some time-delay estimation methods (parts the
methods in Section 7.2).

Much of the contents in this thesis is based on the reports [Bjö02, Bjö03a, Bjö03b,
Bjö03d, Bjö03c, Bjö03f, Bjö03e, BL03], in which also more details can be found.

1.4 Outline

This thesis is structured as follows:
The next chapter, Chapter 2, presents several time-delay estimation (TDE)

problems and properties of time-delay systems. Chapter 3 introduces a classifica-
tion of TDE methods, while Chapters 4-6 describes the principles and properties
of some classes of TDE methods. Several methods have been compared and in-
vestigated experimentally with Monte Carlo simulations. Chapter 7 lists these
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methods and describes the simulation setups and analyses. Next, in Chapter 8,
method parameters are chosen and method properties are investigated using simu-
lations. Chapter 9 contains a comparison of methods, also using simulations. After
that, Chapter 10 contains a discussion and gives recommendations on the choice of
method and gives conclusions about method properties and ends with a description
of possible future work. Appendix A contains validation graphs for the analysis.



Part I

Time-delay estimation
problems and methods
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2
Time-delay Estimation Problems

and Time-Delay Systems

The first section of this chapter states a general linear time-delay estimation (TDE)
problem that encompasses most TDE problems found in the literature on automatic
control and signal processing. Then some special cases of the general problem are
listed, among others the problem from the introduction, namely to estimate Td in

y(t) = G(p)u(t) + n(t) = Gr(p)u(t− Td) + n(t)

(where Gr(p) is a linear dynamic system without time-delay), which is the problem
that is treated in this thesis. The second section lists some properties of linear
dynamic systems with time-delay.

2.1 Time-Delay Estimation Problems

A general linear TDE problem is

y1(t) = G1(p)u(t) + n1(t) (2.1)

y2(t) = G2(p)u(t− Td) + n2(t)

where, the signals y1(t) and y2(t) are measured, n1(t) and n2(t) are measurement
noise and G1(p) and G2(p) are linear systems (without time-delay). The time-
delay to be determined is Td. The signals can be either wideband or narrowband.
The signals can be either real valued or complex valued. Complex (or analytic)
signal representation is often used for narrowband signals but can also be used for
wideband signals. The impulse responses g1(t) and g2(t) of G1(p) and G2(p) can

9



10 Chapter 2 Time-delay Estimation Problems and Time-Delay Systems

also be complex valued. Complex signals and impulse responses are commonly used
for bandpass systems, e.g. in radar and communications.

Some special cases of the general problem (2.1) are:

1. With the noise n1(t) = 0 and G1(p) = 1 we have the active time-delay
estimation (TDE) problem [MG+98, Qua81] (we rename y2 to y and n2 to
n):

y(t) = G(p)u(t− Td) + n(t) (2.2)

This occurs in system identification, which is useful for automatic control and
range estimation in radar etc. Special cases of active TDE are:

(a) In, for example, radar with targets made of several scatterers or radio
communications with multipath the following model could be appropri-
ate:

y(t) =

M∑

m=1

gmu(t− τm) + n(t) (2.3)

The quantity M is the number of reflections in the target or multipath,
gm is the mth reflection coefficient and τm is the time-delay to the mth

reflection. Here the single time-delay Td seems to be replaced by one
delay for each reflection. If we define Td = minm τm and let the rest of
the sum in (2.3) define a linear system G, we are back to problem (2.2).

(b) Another special case of active TDE is when the system is under feedback,
which is the case in automatic control. Then the input signal will be
correlated with the output signal of previous times. This case is also
called closed loop. In the same way the case without feedback is called
open-loop.

(c) G(p) = α with α being a constant. This problem occurs, for example,
in radar with point targets [KQ92, Sum95].

(d) G(p) = 1, which is a special case of 1c.

2. With the noise n1(t) 6= 0 and u(t) unknown we have the passive time-delay
estimation problem [MG+98, Qua81]. This case happens when a signal u(t)
has traveled two different paths and are measured with two sensors, e.g.
in localization of radio sources by Time Delay of Arrival (TDOA) [HR97,
FHJ02, Wik02] or beamforming of audio signals from an array of microphones
in a car [Nyg03]. Special cases of passive TDE are:

(a) G1(p) = 1 and G2(p) = α with α being a constant.

(b) G1(p) = G2(p) = 1. This case is for example found when averaging
several received signals with small time shifts, e.g. in ultrasonic imag-
ing [GS94] and radar, with unknown arrival time [GS94] in order to
increase the signal-to-noise ratio.
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A nominal active scenario can be defined for the the active TDE problem [Car93,
MG+98]. In this scenario n2(t) is white Gaussian noise and G2 = 1. The (asymp-
totically optimum) Maximum Likelihood estimate for this scenario is the matched
filter which is the same as finding the highest maximum of the cross-correlation
function Ry2u(τ) between y2(t) and u(t) [MG+98]. We will discuss this in Sec-
tion 4.1.5.

Also for the passive TDE problem a nominal passive scenario can be defined
[Car93, MG+98]. In this scenario G1(p) = G2(p) = 1 , u(t) is a Gaussian random
signal and n1(t) and n2(t) are mutually uncorrelated, zero mean, white Gaus-
sian noises which are also uncorrelated with u(t). The (asymptotically optimum)
Maximum Likelihood estimate for this scenario is the generalized cross correlator
[Car93], which consists of cross-correlation of prefiltered signals.

2.2 Time-Delay Systems

In this section we will state some properties of linear time-delay systems, i.e. sys-
tems of the form Ḡ(s) = Ḡr(s) · e−sTd (continuous-time) or G(z) = Gr(z) ·
z−d(discrete-time) where Ḡr(s) and Gr(z) are transfer functions without time-
delay.

We have the following properties for such systems:

• A pure time-delay G(s) = e−sTd is a linear system.

• A pure time-delay G(s) = e−sTd is an allpass system.

• A continuous-time time-delay system is of infinite dimension since an infinite
number of values are needed to describe the state of the system at each point
of time [MZJ87, p. 25-26].

• A continuous-time time-delay system can in state space form be described by
a system of differential-difference equations [MZJ87, p. 26-27], i.e. combined
differential and difference equations.

• The transfer function G(s) = e−sTd of a continuous-time time-delay system
is not a rational function of s. G(s) has an infinite number of poles, which is
consistent with the system’s infinite dimensionality. See [MZJ87, p. 29].

• If the sampling period is constant and the delays are integral multiples of the
sampling period, then a discrete-time time-delay system in state space form
can be described by a system of pure difference equations. Such systems will
be of finite dimension. See [MZJ87, p. 27-28] for more details.

• On the other hand, if the sampling period is not constant, then a discrete-
time time-delay system cannot be described by pure difference equations.
Differential-difference equations are needed [MZJ87, p. 28].
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• The transfer function G(z) of a discrete-time time-delay system is a rational
function of z. G(z) has a finite number of poles, which is consistent with the
system’s finite dimensionality. See [MZJ87, p. 32].

A hybrid, or mixed system, consists of a continuous-time part and a discrete-time
part. An important example is a sampled continuous-time system. See [MZJ87,
pp. 33] for more information.



3
Classes of Active Time-Delay

Estimation Methods

Most methods that have been suggested for active time-delay estimation (Sec-
tion 2.1) (both in control and signal processing) can be put into one of the following
classes:

1. Time-delay approximation methods. The input and output signals are repre-
sented in a certain basis and the time-delay is estimated from an approxima-
tion of the relation (a model) between the signals in this basis. The time-delay
is not an explicit parameter in the model. Depending on the basis there are
several subclasses:

(a) Time domain approximation methods. The basis consists of impulse
functions δ(t− tn). The time-delay is the delay for the impulse response
to start (become nonzero) [Bjö03d, CHWW99, Isa97, KG81]. Finding
the maximum of the cross-correlation between input and output, which
is a common method [MG+98, Car93], is in principle the same thing.
Methods that over-parameterize the numerator of a transfer function
model, e.g. [Kur79, KG81], also belong to this class.

(b) Frequency domain approximation methods. The basis consists of com-
plex sinusoids eiωt. The time-delay is estimated from the phase of the
time-delay e−iωTd [IHD01b, Isa97, FHJ02, GS94, Bjö02, HR97]. A
time-delay is a equivalent to a phase shift.

(c) Laguerre domain approximation methods. The time-delay is estimated
from a relation between the input and output signals expressed in contin-
uous-time or discrete-time Laguerre functions [FM99b, Fis99].

13
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Also other bases for the signals are possible, e.g. Kautz functions [Kau54,
Wah94, SBS97]. There are two independent steps in these methods: 1) Esti-
mate the approximation model. 2) Estimate the time-delay from the model.

2. Explicit time-delay parameter methods. The time-delay is an explicit param-
eter in the model.

(a) One-step explicit methods. The time-delay and the other model param-
eters are estimated simultaneously. Two variants are possible:

i. Model and estimate the time-delay as a continuous parameter in a
continuous-time model. The time-delay is thus not restricted to be a
multiple of the sampling interval but can be a subsample time-delay.
See for example [NL91, Lju02].

ii. Model and estimate the time-delay as a discrete parameter in a
discrete-time model. Estimating several models, e.g. ARX models,
with a complete set of time-delays and choosing the best is of this
subclass ([Swa99, IHD00] and Section 5.2.3).

(b) Two-step explicit methods [EDE89, Pup85]. Alternating between esti-
mating the time-delay and the other parameters.

(c) Sampling methods. Utilizing the sampling process to derive an expres-
sion for the time-delay. For example, zero-order-hold (zoh) sampling of
a system with subsample time-delays creates an extra zero [FMS91].

3. Area and moment methods [ÅH95, Bjö03b, Ing03, WZ01]. These methods
utilize relations between the time-delay and certain areas above or below the
step response s(t) and certain moments of the impulse response h(t) (integrals
of the type

∫
tnh(t)dt). There are two independent steps: 1) Estimate or

measure the step or impulse response. 2) Estimate the time-delay from these
responses.

4. Higher-order statistics (HOS) methods. Their main advantage is that noise
with a symmetric probability density function (PDF), e.g. Gaussian, theo-
retically can be removed completely by HOS [NM93]. If the desired signal
has a symmetric PDF, it will disappear as well. In [NP88], bispectra and 3rd

order moments are used and methods in the 2D time and frequency domains,
similar to subclasses 1a and 1b, are presented. They assume Gr = 1.

Methods for the passive TDE problem (Section 2.1) should also be possible to use
for the active problem if the two noises n1(t) and n2(t) in Equation (2.1) are allowed
to have different powers. Then n1(t) could be zero and we have the active TDE
problem. Active TDE is thus a special case of passive TDE. The opposite, to use
active TDE methods for passive TDE problems, could be possible if the power of
the noise n1(t) is low.



4
Time-Delay Approximation

Methods

In time-delay approximation methods, a model without an explicit parameter for
the time-delay is estimated. From this model the time-delay is estimated. De-
pending on in which domain the input and output signals are represented this is
performed in different ways. Section 4.1 describes the time domain, Section 4.2 the
frequency domain and Section 4.3 the Laguerre domain.

4.1 Time Domain Approximation Methods (Thresh-
olding Methods)

4.1.1 Principles

In time domain approximation methods an approximation of the system including
the time-delay is represented in the time domain. This means that the input,
output and noise signals are represented in this domain, i.e. in the basis where
the basis functions are impulse functions δ(t − tn). The time-delay is estimated
by measuring the time-delay to the start (the beginning of the nonzero part) of an
estimated impulse response of the system. Since this can be done by thresholding
these responses, these methods are here also called thresholding methods .

The impulse response of a system with time-delay is created as in Figure 4.1. To
the left the impulse response gr(t) of the system without time-delay is depicted. In
the middle the pure time-delay is seen as a system whose impulse response δ(t−Td)
is an impulse at the time equal to the time-delay Td. To the right is the impulse
response g(t) of the system with time-delay, which is the convolution of the two
systems to the left: g(t) = gr(t) ∗ δ(t− Td).
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Figure 4.1 The creation of the impulse response of a system with time-delay.
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If an impulse response ĝ(t) is available, directly measured or estimated, the
time-delay can be estimated by either of the following two approaches:

1. Separation of time-delay and dynamics and then detection:

(a) First, separate the pure time-delay δ(t − Td) from the the dynamics
gr(t) of the system g(t). This is the reverse operation of the creation
of the system in Figure 4.1 and results in an estimate gd(t) of the pure
time-delay δ(t− Td). See Section 4.1.4 for a simple example. This can
be compared with the corresponding separation for frequency domain
methods that will be presented in Sections 4.2.4-4.2.5.

(b) Then, estimate the time when the maximum of the estimate gd(t) of the
time-delay δ(t− Td) occurs. This is the time-delay estimate T̂d.

2. Direct detection of the start of the impulse response ([KG81, Isa97, CHWW99]
and Section 4.1.3):

(a) Detect when the impulse response has started to rise (become nonzero).

(b) Estimate the start time of the impulse response. An idea is to go back-
wards from the detection time depending on the slope of the impulse
response (Figure 4.2).

In some signal processing applications whereGr(s) = α, with α being a constant
(case 1c in Section 2.1), the separation of g(t) into δ(t − Td) and gr(t) is not
needed because the impulse response of the whole system with time-delay will be
g(t) = αδ(t − Td), since gr(t) = αδ(t). The ubiquitous estimation of the cross-
correlation between the input and output signals as a means to estimate time-
delays [MG+98] is only a way to estimate the impulse response. See Section 4.1.5.

If we use the maximum of the impulse response as an estimate of the time-delay
for systems with dynamics, i.e. Gr(s) is a dynamic system and not only a constant,
we would get a bias in the estimate. This is the motivation for the separation in
estimation approach 1 above.
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Figure 4.2 Estimation of time-delay by detecting the start of the impulse response.
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4.1.2 Estimating the approximation model

Before we can estimate the time-delay from the impulse response as in Section 4.1.1,
we need to estimate the impulse response from input output data. This is the topic
of this section.

The impulse response g(t) can be expressed as

g(τ) =
Ryu(τ)

λ
(4.1)

when the input signal is white noise with autocorrelation function Ru(τ) =
E {u(t+ τ)u(t)} = λδ(τ) [Lju99, p. 170]. The quantity λ is the power of the
input signal. Estimates of the cross-correlation function Ryu(τ) = E {y(t+ τ)u(t)}
and the input signal power λ can be obtained by:

R̂yu(τ) =
1

N

N∑

t=τ+1

y(t)u(t− τ) , λ̂ =
1

N

N∑

t=1

u(t)2 (4.2)

If the input is white, an estimate of the impulse response is then

ĝ(τ) =
R̂yu(τ)

λ̂
. (4.3)

This is called correlation analysis [Lju99].
A different way of estimating the impulse response is to estimate a parametric

FIR model of the system with the Prediction Error Method (PEM) (Section 4.1.5).
The model will be a linear regression and the estimate is given by a least-squares
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estimate:

θ̂N =


 1

N

∑

t

ϕ(t)ϕ(t)T

︸ ︷︷ ︸




A

−1[
1

N

∑

t

ϕ(t)y(t)

]

︸ ︷︷ ︸
B

(4.4)

with ϕ(t) = [u(t), u(t − 1), ...] [Lju99, p. 204]. This is essentially the same as
Equation (4.3). If the input signal u(t) is white, then the matrix A in Equation

(4.4) will be A = λ̂ I and the matrix B will be

B =



R̂yu(0)

R̂yu(1)
...


 (4.5)

and θ̂N =
[
ĝ0 ĝ1 . . .

]
is the same as ĝ(τ) =

[
ĝ0 ĝ1 . . .

]
=[

ĝ(0) ĝ(1) . . .
]

in Equation (4.3).

The estimate θ̂N will be Gaussian distributed when the noise is Gaussian. Even
if the noise is not Gaussian, θ̂N will often be asymptotic Gaussian when N → ∞
[Lju99, p. 556].

Figure 4.3 displays some estimated impulse responses for the system G1(s) in
Section 7.3 for the three input signals in the standard benchmark (Section 7.3.1) and
the two SNRs 100 and 1. The estimation is performed according to Equation 4.4
using the arx command in the Matlab System Identification Toolbox. We
see that in some cases the estimate is very inaccurate. This makes the time-delay
estimation a hard job, both for the thresholding methods in Sections 4.1.3 and 4.1.6
and the area and moment methods in Sections 6.1 and 6.2. In reference [CHWW99]
a two-step improvement method to reduce the uncertainty of the impulse response
is suggested (see Section 4.1.3).

When we have an estimate of the impulse response, we can get an estimate of
the step response by simulating the estimated system (represented by its impulse
response) with a step as input signal. This is the same as integrating the impulse
response. The numerical integration of the impulse response estimate can be done
in different ways. By the integration, which is an averaging operation, we can hope
that the uncertainty of the impulse response estimate (Figure 4.3) is reduced. If
the impulse response coefficients to integrate are Gaussian distributed then the
step response will also be Gaussian since a sum of Gaussian random variables is
Gaussian.

In [KG81], ARMAX models are used instead of FIR models (=impulse re-
sponse). Parts of the dynamics of the system are then modeled by the denomina-
tor polynomial and the numerator polynomial is not equal to the impulse response
but the numerator still contains the time-delay. When estimating the time-delay,
the numerator can be treated as the impulse response is treated in Section 4.1.1
and 4.1.3.
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Figure 4.3 Impulse response estimate of the system G1 by the Matlab func-
tion arx for different input signal types l and different SNRs ↔(Section 7.3). No
prewhitening of the input signal (Section 7.3). The solid line is the true impulse
response. The circles are the estimated impulse response and the triangles mark
±two estimated standard deviations. Note the different ranges of the vertical axes.
(t130f1 SNR out))

0 10 20 30 40 50 60 70
−0.02

0

0.02

0.04

0.06

0.08

Time [s]

Impulse response ,10−30%, SNR=100, G1

0 10 20 30 40 50 60 70
−0.1

−0.05

0

0.05

0.1

0.15

Time [s]

Impulse response ,10−30%, SNR=1, G1

0 10 20 30 40 50 60 70
−0.02

0

0.02

0.04

0.06

0.08

Time [s]

Impulse response ,0−100%, SNR=100, G1

0 10 20 30 40 50 60 70
−0.05

0

0.05

0.1

0.15

Time [s]

Impulse response ,0−100%, SNR=1, G1

0 10 20 30 40 50 60 70
−0.2

−0.1

0

0.1

0.2

0.3

Time [s]

Impulse response ,steps, SNR=100, G1

0 10 20 30 40 50 60 70
−2

−1

0

1

2

Time [s]

Impulse response ,steps, SNR=1, G1

PSfrag replacements

t
u(t)
y(t)
s(t)

gts(t)

T̂d
Td

δ(t− Td)
g(t)
gr(t)
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4.1.3 Estimating the start of the impulse response

Most time domain methods for dynamic systems with time-delay in the literature
detect the start of (the start of the nonzero part of) the impulse response (ap-
proach 2 in Section 4.1.1). In this section we will discuss how this can be done.
Figure 4.4 uses the same structure and terminology as in [Gus00] to describe the
time-delay estimation process. After the impulse response has been estimated,
ĝ(t), we form a distance measure s(t), which will ideally become nonzero when the
impulse response has started to rise. For us s(t) is simply the estimated impulse
response ĝ(t). Then we perform an averaging operation to reduce the noise. This
results in the test statistics gts(t), which then is thresholded to detect the start of
the impulse response. Finally, the time-delay estimate is given by an estimate of
the change time of the impulse response (see Figure 4.2).
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Figure 4.4 Steps in time-delay estimation in the time domain.
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The averaging to get the test statistics can be accomplished by one or several of:

Step response. Integration to step response.

Cumulative sum (CUSUM). Perform an averaging of the estimated impulse or step
response by CUSUM [Pag54, Gus00, GLM01] before the thresholding. There
are two user-selected parameters, the drift ν(t) and the threshold h(t). See
Algorithm 1. See Figure 4.6 for an example of CUSUM thresholding of an
impulse response estimate.

Carlemalm impulse response. In [CHWW99] a special technique is used to decrease
the uncertainty of the estimated impulse response, cf. Figure 4.3. First, all
coefficients of the impulse response are estimated recursively by an LMS fil-
ter [Gus00, GLM01]. Then these estimates are improved by one Kalman fil-
ter [Gus00, GLM01] for each coefficient. The estimated coefficients from the
LMS filter are used as measurement signals for the Kalman filters. The results
from the Kalman filters are the second estimates of the coefficients (the first
estimates come from the LMS filter) and estimates of their covariance. This
technique requires white input and Gaussian noise.

Direct . Use the estimated estimated impulse or step response directly for thresh-
olding. Using the impulse response directly is of course no averaging. See
Figure 4.5 for an example of direct thresholding of a an impulse response esti-
mate.

The thresholding (Figure 4.4) can be performed by:

Fixed threshold . The threshold is fixed and data independent.

Relative threshold . The threshold depends on the uncertainty of the impulse or step
response estimate. If we let the threshold be proportional to the uncertainty
of the impulse or step response estimate we will get a specified risk for false
alarm (saying that the time-delay is over when it is not). By lowering this risk
(increasing the threshold) the probability of detection will also be lowered.



4.1 Time Domain Approximation Methods (Thresholding Methods) 21

Figure 4.5 Direct thresholding of impulse response. Left: Estimated impulse
response with uncertainty . Right: Estimated impulse response and threshold.
Simulated input signal of type RBS 10-30% and system G1 (Section 7.3). SNR=1.
The estimated time delay with idimp4 (Section 7.2) (hstd = 3) was T̂d = 11. True
time-delay Td = 10 . (t134d1)
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ĝ(t)

Algorithm 1 CUSUM detector.

Design parameters: Drift ν(t) and thresholdh(t) that may be time dependent.

Output: Detection time ta and perhaps the estimate of the change time k̂.

Input: Distance measure s(t).

Internal variable: Test statistics gts(t).

1. t = 0, gts(−1) = 0

2. gts(t) = gts(t− 1) + s(t)− ν(t)

3. If gts(t) < 0 then gts(t) = 0, k̂ = t

4. If gts(t) > h(t) > 0 then ta = t, goto 6

5. t = t+ 1 , goto 2

6. The detection time is ta. An estimate of the change time is k̂.
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Figure 4.6 CUSUM thresholding of impulse response. Left: Impulse response
with uncertainty . Right: Test statistics g(t), threshold h and drift ν for CUSUM
on impulse response. Simulated input signal of type RBS 10-30% and system G1

(Section 7.3). SNR was 1. The estimated time delay with idimpCusum3 (hstd = 2
and νstd = 1) was T̂d = 11. True time-delay Td = 10 . (t146b1)
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Max threshold for detection. Using a “max threshold for detection” is the same as
finding the maximum of the cross-correlation function. This is a suitable ap-
proach when the output signal is a pure time-delay of the input signal but
not if there also is a dynamic system between the input and output. See
Section 4.1.1.

Constant False Alarm Ratio (CFAR). With CFAR the threshold is selected to give
a constant false alarm rate by looking at the values of the estimated cross-
correlation function (impulse response) close to the time-delay that is being
tested [MG+98, NS95]. These close-by values are used in an estimate of the
noise level. Compare with the Section“Relative threshold”above. This method
is common in radar.

Fault detection approach. In [Isa97] a time-delay estimation method is presented
which is based on fault detection. It assumes the input signal to be a step but
as we know that a step response can be estimated for many input signals the
method is more general than stated in [Isa97]. In the method, for each sample
of the step response a Kalman filter is started which tries to track the output.
This will give a bank of Kalman filters. The filter that best tracks the output
is detected and gives via its starting time the time-delay estimate.

Carlemalm relative threshold. In [CHWW99] a thresholding is described which is
similar to “relative threshold” above but simultaneously takes into account
more than one of the estimated impulse response coefficients.
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Kurz detection. In [Kur79, KG81] the time-delay is estimated by detecting when
the numerator coefficients of an estimated linear model no longer are zero. Due
to noise this is not easy and a special technique is used.

When a change in the estimated impulse response has been detected, the change
time can be estimated by going backwards from the detection time depending on
the slope of the impulse response (Figure 4.2). See [Gus00] for estimating the
change time when using CUSUM. In the simulations of thresholding methods in
this work the detection time and not an estimated change time was used as the
time-delay estimate. For example, in the CUSUM detection in Algorithm 1 the
detection time ta was uses as the time-delay estimate. This should cause bias as is
discussed in Section 8.1.2.

4.1.4 Separating the time-delay and the dynamics

In this section we will give an example on how the dynamics can be separated from
the time-delay (approach 1 in Section 4.1.1). We start with an impulse response of
a system with time-delay g(t) = gr(t) ∗ δ(t−Td) as in Section 4.1.1. See Figure 4.7
(top left) for an example. The Fourier transform of g(t) is G(iω) = Gr(iω) ·e−iωTd .
Then by taking the real part of G(iω) we get

Gfr(iω) = Re {G(iω)} = Re
{
Gr(iω) · eiωTd

}
= Afr(iω) sin (Tdω + ϕ(iω)) ,

where

Afr(iω) =

√
(ReGr(iω))2 + (ImGr(iω))2

ϕ(iω) = arcsin

(
ReGr(iω)

Afr(iω)

)
.

The function Gfr(iω) consists of Afr(iω) which is modulated with a sinusoid with
“frequency”Td and phase shift ϕ(iω) (Figure 4.7 (top right)). One idea to estimate
the “frequency” would be to study the “spectrum” of Gfr(iω). Since we already
are in the frequency domain, we could compute the inverse Fourier transform and
look for the peak at “frequency” Td. We see in Figure 4.7 (top right) that there
is an oscillation in Gfr(iω) but its amplitude is small. To increase the effect of
the oscillation we take the logarithm (after taking the absolute value to avoid the
logarithm of negative values) which can be used to amplify weak parts of a positive
signal (Figure 4.7 (bottom left)). Finally, we compute the inverse Fourier transform
and look for peaks at the “frequency” 2Td. Because the absolute value doubles the
base frequency of the periodic signal (the sinusoid) we need the number 2.

This method is similar to using cepstrum, in which we only take the absolute
value instead of the absolute value of the real part as above, to find the time-delay
of an echo [DC02, GLM01] (problems 1c and 2a in Section 2.1).

When a change in the estimated impulse response has been detected, the change
time can be estimated by taking the maximum of an interpolation of the estimated
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Figure 4.7 An example of separation of the dynamics from the pure time delay.
The true time delay is d0 = 33 samples . Top left is an impulse response g(t) of the
system G(z) = 1

(z−0.9) · z−33 with noise (SNR=100). Top right is the real part of

the Fourier transform of the impulse response, Gfr. Bottom left is the logarithm of
the absolute value of the top right signal. The last graph (bottom right) shows the
inverse Fourier transform of the bottom left signal and has a peak at the double
time-delay (2(d+ 1)). (t237a)
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approximation gd(t) of the pure time-delay δ(t− Td). This can achieve subsample
time-delay estimates [Mod91, LT99].

If the input signal is not white, and especially when it is oscillatory (there are
dominating frequencies), then the cross-correlation function (the impulse response)
will have several local maxima. See [Pup85, JD93].
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4.1.5 Relation between PEM, cross-correlation, matched fil-
ter and maximum likelihood estimation

In this section we will discuss the relation between the Prediction Error Method
(PEM) [Lju99], cross-correlation method, matched filter [Hän91] and maximum
likelihood estimation of the time-delay. The relation between PEM and correlation
analysis was shown in section 4.1.1. The relation between time-delay estimation in
the time and frequency domains is discussed in Section 4.2.2.

The prediction error method (PEM) is a fundamental approach to estimate

models of dynamic systems. In PEM the estimate θ̂N of the model parameter
vector θ using N input output data is given (with a quadratic criterion) by

θ̂N = arg min
θ

1

N

N∑

t=1

1

2
ε2(t|θ),

where ε2(t|θ) = y(t) − ŷ(t|θ) is the prediction error of the model and ŷ(t|θ) is the
one-step prediction of the model output [Lju99]. If the data are generated by linear

systems and the model is linear, then θ̂N will converge to

θ∗ = arg min
θ

Ē

{
1

2
ε2(t|θ)

}

as the number of data N → ∞ [Lju99, Th.8.2, p.254]. The symbol Ē means
ensemble averaging for stationary stochastic processes (statistical expectation) and
time averaging (as N → ∞) for deterministic signals. For all details of this result
see [Lju99].

In the cross-correlation method for time-delay estimation, the original signal
u(t) and the time-delayed signal y(t) are compared. They are put close to each
other. Then they are time-shifted until they agree the most. For stochastic pro-
cesses this can more formally be written

d̂ = arg max
τ

E {y(t)u(t− τ)} .

In reality this has to be implemented as

d̂ = arg max
τ

∑

t

y(t)u(t− τ). (4.6)

The purpose of a matched filter [Hän91] is to detect a known signal u(t). This
is done by sending the received signal y(t) through a linear filter with the impulse
response h(t) = u(−t). The filter is matched to the signal u(t). The output z(τ) (we
here use τ as the time variable instead of t) of the filter is given by the well-known
convolution sum

z(τ) =
∑

t

h(t− τ)y(t) =
∑

τ

y(t)u(τ − t).
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The arrival time of the known signal can be estimated with the time when the filter
output has its maximum value:

d̂ = arg max
τ

z(τ) = arg max
τ

∑

τ

y(t)u(τ − t). (4.7)

As is seen, this is the same as the cross-correlation method for time-delay estimation
in Equation (4.6).

We will now show the relation between the PEM and the cross-correlation
method (matched filter) for a pure time-delay. We will show that for the active
TDE problem 1d in Section 2.1,

y(t) = u(t− d) + n(t) with n(t) white noise,

the prediction error method (PEM) in system identification and the matched filter
are equivalent.

The PEM estimate uses the the one-step predictor ŷ(t|τ) = u(t− τ) [Lju99] of
the output signal y(t) for a pure time-delay of size τ . The PEM estimate is [Lju99]

d̂ = arg min
τ

∑
(ŷ(t|τ)− y(t))2 = arg min

τ

∑
(u(t− τ) − y(t))2

= arg min
τ

[∑
u2(t− τ) +

∑
y2(t)− 2

∑
y(t)u(t− τ)

]
(4.8)

= arg min
τ

[
−2
∑

y(t)u(t− τ)
]

= arg max
τ

∑
y(t)u(t− τ),

which is the same as the matched filter in Equation (4.7). The fourth equality sign
in (4.8) follows since

∑
y2(t) does not contain τ and

∑
u2(t − τ) =

∑
u2(t) does

not depend on τ .
In [JD93, p. 289] it is asserted that there is equivalence between maximum

likelihood estimation of the time-delay and a matched filter (cross-correlation) if
the following assumptions are met:

• The active TDE problem 1d in Section 2.1 with discrete-time signals and
time-delay d:

y(t) = u(t− d) + n(t)

• The noise n(t) is Gaussian with rational spectrum with only poles but it is
not necessarily white.

• The duration of the input signal u(t) is short compared to the length of the
observation interval.

• The edge effects due to the finite observation interval are ignored.

The matched filter estimate is

d̂ = arg max
τ

L−1∑

t=0

y(t)u(t− τ) (4.9)
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Algorithm 2 Direct and CUSUM thresholding of impulse or step response with
relative threshold.

1. Choose the the relative threshold hstd and relative drift νstd.

2. Estimate the impulse response and estimate the uncertainty of it.

3. Optionally, integrate to step response.

4. Thresholding. If the estimated impulse or step response is larger than a
threshold then we consider the impulse (step) response to have started and
this point of time is the time-delay estimate. The thresholding can be either

• Direct thresholding (Section 4.1.3). The thresholds (different for each
time) are h(t) = hstd · ŷstd(t) and ŷstd(t) is the estimated standard devi-
ation of the impulse or step response, respectively.

• Cumulative sum (CUSUM) thresholding (Algorithm 1 and Sec-
tion 4.1.3). The used drift and threshold are then ν(t) = νstd · ŷstd(t)
and h(t) = hstd · ŷstd(t).

for white noise (compare with Equations 4.7, 4.8) and

d̂ = arg max
τ

[
yTR−1

nnu(t− τ)
]

(4.10)

for colored noise. The matrix Rnn is the covariance matrix of the noise. The vector
y = [y(0), . . . , y(L− 1)]T . The vector u(∆t) = [u(0− d), . . . , u(L− 1− d)]T .

With the above assumptions this is the same as the maximum likelihood esti-
mate of the time-delay according to [JD93, p.289].

4.1.6 Some methods

Here some complete methods, i.e. with both estimation of the approximation model
(Section 4.1.1) and estimation of the time-delay from the model (Sections 4.1.1
and 4.1.3), are listed.

Direct and CUSUM thresholding. In these methods the impulse or step re-
sponse estimate is thresholded directly or with CUSUM with a relative threshold
(Section 4.1.3). See Algorithm 2. In this thesis the detection time ta was used as
the time-delay estimate (cf. Algorithm 1) . The uncertainty ŷstd(t) = ŷstd(0) was
used for all times for CUSUM thresholding.

Kurz method. In [Kur79, KG81] a method for time-delay estimation is described.
It assumes that the true system without the time-delay can be described by an
ARMAX system structure [Isa97]. The model is of ARMAX structure with an
extended numerator. The time-delay is estimated by detecting when the numerator
coefficients no longer are zero. Due to noise this is not easy and a special technique
is used [KG81, Isa97]. See also Kurz detection in Section 4.1.3.
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Isaksson Fault detection approach. This method uses Fault detection approach
in Section 4.1.3 on measured step responses. According to [Isa97], advantages are

• No “preliminary knowledge” of the system is needed.

• No large difference in performance between low and high SNR.

• The method is robust.

• The method usually gives accurate estimates of the time-delay.

Carlemalm. This is a combination of Carlemalm impulse response and relative
threshold or Carlemalm relative threshold in Section 4.1.3.

4.2 Frequency Domain Approximation Methods
(Phase Methods)

4.2.1 Time-delay in continuous-time

In frequency domain approximation methods an approximation of the system in-
cluding the time-delay is represented in the frequency domain. The input, output
and noise signals are represented in the frequency domain, i.e. in the basis where the
basis functions are complex sinusoids eiωt. As is well-known, a time-delay e−iωTd

is the same as a phase shift −ωTd in the frequency domain. In these methods we
estimate the slope of the phase of the cross-spectrum in the frequency domain.
Therefore they are here also called phase methods.

If Ḡ(s) is a linear continuous-time system then

d

dω
arg Ḡ(iω)

∣∣∣∣
ω=0

= 0

if the system do not contain a time-delay and

d

dω
arg Ḡ(iω)

∣∣∣∣
ω=0

= −Td

if the system contains a time-delay Td.

4.2.2 Time-delay in discrete-time

Since we have sampled data, we would like to use the sampled frequency function
G(eiωT ) instead of the continuous-time frequency function Ḡ(iω). This will work,
since for low frequencies, G(eiωT ) does not differ much from the true frequency
function Ḡ(iω) [LG91, p. 74]. A rule of thumb is that the agreement is good for
frequencies up to 1/10 of the sampling frequency. The sampled frequency function
G(eiωT ) can be estimated by nonparametric methods like spectral analysis or by
parametric methods with arbitrary linear model structures [Lju99, LG91].
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In time-delay estimation by spectral analysis, we utilize the formula [GLM01]
Φyu(ω) = G(eiωT )Φu(ω) or

G(eiωT ) =
Φyu(ω)

Φu(ω)
, (4.11)

where the sampled frequency function G(eiωT ) is connected with the cross-spectrum
Φyu(ω) between output y(t) and input u(t) and the (auto) spectrum Φu(ω) of the
input. A natural estimate of G(eiωT ) is then to use the estimated cross-spectrum
Φ̂yu(ω) divided by the estimated (auto) spectrum Φ̂u(ω):

Ĝ(eiωT ) =
Φ̂yu(ω)

Φ̂u(ω)
. (4.12)

The cross-spectrum and the (auto) spectrum can be estimated in different ways.
Normally, the start is the periodogram [GLM01, Lju99]. Then it is smoothed with
some method [GLM01, Lju99, Wik02].

In [HR95, HR97, Wik02] the cross-spectrum is then noise reduced by windowing
in the time domain before returning to the frequency domain. This is possible for
wideband signals whose cross-correlation function in the time domain is narrow.

Then the phase of Ĝ(eiωT ) is studied to give an estimate of the time-delay

T̂d = − d

dω
arg Ĝ(eiωT )

∣∣∣∣
ω=0

where the derivative is approximated in a suitable way. The reference [Hor00,
IHD01b] contains an approximation of the derivative for the active TDE prob-
lem (2.2). The derivative is easier to approximate for the passive TDE problem 2a
(Section 2.1) because then the time-delay is the only thing that affects the phase.
See [Wik02] for an example of approximation of the derivative in this case.

Time-delay estimation by spectral analysis is equivalent to time-delay esti-
mation by cross-correlation analysis in the frequency domain. Since the cross-
spectrum Φyu(ω) is the discrete-time Fourier transform of the cross-correlation
function Ryu(τ) [GLM01, p. 54],

Φyu(ω) = Ts

∞∑

k=−∞
Ryu(k)eiωkTs ,

and in the same way the autospectrum the Fourier transform of the autocorrelation
function Ru(τ), we see that Equation (4.12) is the same as Equation (4.1) in the
frequency domain (if the input signal is white). In the time domain (Equation (4.1))
a time-delay in the system will be a time-delay in h(τ). In the frequency domain
(Equation (4.12)) a time-delay in the system will be a phase shift in Ĝ(eiωT ). For
an example of time-delay estimation by nonparametric methods see [Wik02].

If the model structure in a parametric method is a linear regression then the
model can be estimated by cross- and autocorrelations. Compare with the FIR
model in Section 4.1.2. For some examples of time-delay estimation by parametric
methods see [Hor00, IHD01b, Bjö02].
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4.2.3 Estimating the approximation model

To use the estimation methods in the previous section we first must estimate a
discrete-time model of the true system with time-delay. One interesting model
structure to use is the Laguerre model structure. In this section we briefly describe
this structure.

If a discrete-time system G(z) is is strictly proper, asymptotically stable and
continuous in |z| ≥ 1, then it can be written [Wah91, p. 552]:

G(z) =

∞∑

k=1

dk

√
(1− α2)Ts
z − α

(
1− αz
z − α

)k−1

=

∞∑

k=1

dkLk(z) (4.13)

with |z| ≥ 1 and −1 < α < 1. Ts is the sampling interval and dk are some
coefficients. We change from the Z-transform variable z to the delay operator q
and write the functions Lk(z) as

Lk(q) =

√
(1− α2)Tsq

−1

1− αq−1

(−α+ q−1

1− αq−1

)k−1

. (4.14)

These functions are called the discrete-time Laguerre functions in the frequency
domain.

A model with a finite number of Laguerre functions looks like

y(t) = Ĝ(q)u(t) + v(t) (4.15)

Ĝ(q) =

nlag∑

k=1

dkLk(q) (4.16)

with y(t), u(t) and v(t) being the output, input and noise signals respectively. The
model Ĝ(q) is an approximation of the true system G(z) in Equation (4.13).

In [Hor00, IHD01b] a Laguerre model was used. There is, however, nothing that
prevents us from using a model of a different structure and estimate the time-delay
from it. For example, FIR, ARX or output error (OE) model structures [Lju99]
could be used. We will see examples on this later.

4.2.4 Continuous-time estimation using Padé approximation

A time-delay e−sTd can be approximated by a Padé approximation of the first order
(see for example [Mat96, GLM01, Isa97, p. 149])

e−sTd ≈ 1− sTd/2
1 + sTd/2

= H1(s) (4.17)

for small |sTd|.
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The amplitude of both the time-delay e−iωTd and the all-pass system H1(s) is
equal to one. It is the phase that characterizes the time-delay and it is desirable that
the all-pass system approximates this well. Padé approximations of time-delays of
higher orders are also possible [Lam93, eq. (2.1) and (2.2)], [Isa97] or in [GVL96,
p.572]. All zeros in a Padé approximation are non-minimum-phase [Isa97].

An approach to estimate the time-delay from a Padé approximation was de-
scribed in [Isa97]. After the discrete-time Laguerre model has been estimated, its
zeros are converted to continuous-time by means of

si ≈
1

Ts
log(zi) (4.18)

This approximation is valid when the sampling period Ts → 0 and the order n of
the numerator polynomial and the order m of the denominator polynomial of the
continuous-time system fulfills n+ 1 = m [ÅSH84]. .

Let the true continuous-time system be Ḡ(s) = Ḡ1(s) · e−sTd = Ḡ1(s) · Ḡap(s).
We assume that all non-minimum-phase zeros originate from the time-delay and
not from the remaining system Ḡ1(s). The system Ḡ1(s) is thus assumed to be
minimum-phase. By comparing the non-minimum-phase zeros with the zeros of an
Pade´ approximation, the time-delay can be decided from [Isa97] as

T̂d
2

=
∑

RHP

1

si
, (4.19)

where RHP means Right Half Plane.
The time-delay estimate in number of sampling intervals is [Isa97, Hor00]

k̂ =
T̂d
Ts

+ 1 (4.20)

The number 1 in Equation (4.20) is added to give the time-delay after sampling
since zero-order-hold sampling gives an extra time-delay of one sampling interval.

A problem with this method is that it can deliver complex valued time-delay
estimates.

4.2.5 Using the phase of the discrete-time allpass part (DAP
methods)

Assume the true continuous-time system is Ḡ(s) = Ḡ1(s) · e−sTd = Ḡ1(s) · Ḡap(s).
The system Ḡ1(s) is linear and time invariant. Ḡap(s) is the time-delay. We
estimate a discrete-time rational linear model G(z) of Ḡ(s) and factorizeG(z) into a
minimum-phase system G1(z) and an allpass system Gap(z): G(z) = G1(z)Gap(z).
(Allpass means

∣∣Gap(eiω)
∣∣ ≡ 1) We then consider Gap(e

iωTs) as an approximation
of the time-delay Ḡap(iω) = e−iωTd [Hor00, IHD01b]. A pure time-delay is of
course an allpass system. We get the allpass part Gap(z) of G(z) if we put all non-
minimum phase (outside the unit circle) zeros of G(z) into Gap(z) and add poles
to Gap(z) which are the non-minimum phase zeros mirrored in the unit circle.
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If we approximate a continuous-time linear system Ḡap(s) with a discrete-
time linear system Gap(z) by sampling, then the frequency functions Ḡap(iω) and
Gap(e

iωTs) will agree well for low frequencies [GL97, p. 115-116]. [GL97] has the
rule-of-thumb that frequencies up to 1/10 of the sampling frequency gives a good
agreement.

From the allpass model Gap(e
iωTs) the time-delay can be estimated by taking

the derivative of the phase ϕ(ω) = argGap(e
iωTs). The motivation for this is that

the time-delay of the true system is given in this way:

dϕ̄

dω
=
d arg Ḡap(iω)

dω
=

d

dω
arg e−iωTd=

d

dω
{−ωTd} = −Td (4.21)

Our time-delay estimate T̂d is given by an approximation of the derivative of the
phase ϕ(ωTs) = argGap(e

iωTs):

Td ≈ −
ϕ(ω1Ts)

ω1Ts
= −argGap(e

iω1Ts)

ω1Ts
(4.22)

for a small ω1 and adding a 1 because of the extra time-delay that is created by
the sampling:

T̂d = −argGap(e
iω1Ts)

ω1Ts
+ 1; ω1 small (4.23)

This approach is described in [Hor00, IHD01b]. (In [Hor00, IHD01b] a different
derivation is done.) In [Hor00, IHD01b] ω1 = 10−4 is suggested. The method in
Equation 4.23 is in this thesis called DAP (Discrete-time Allpass Phase). Other
forms of approximations of the derivative should also be possible.

4.2.6 Problems with the DAP method

In order to better understand how the DAP method works, we will in this section
in detail calculate the DAP estimate l for two simulated trials. In one of the trials
the method will work well but in the other it will fail completely.

By looking at how the phase of a model G(eiωTs) can be calculated from the
poles and zeros of G(z) we can get some insight into what happens in the calculation
of the time-delay estimate in Equation (4.23).

If we have a rational discrete-time transfer function

G(z) = β
(z − z1) . . . (z − zm)

(z − p1) . . . (z − pn)
, (4.24)

its frequency function will be

G(eiωTs) = β
(eiωTs − z1) . . . (eiω − zm)

(eiωTs − p1) . . . (eiωTs − pn)
. (4.25)

Let Z̄k(ω) be the vector (eiωTs − zk) from zk to the point eiωTs on the unit circle.
Write Z̄k(ω) in polar form as Z̄k(ω) = Zk(ω)eiψk(ω), where Zk(ω) is the absolute
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value and ψk(ω) the phase of Z̄k(ω). We do the same for the poles. P̄k(ω) is
the vector (eiωTs − pk) from pk to the point eiωTs on the unit circle and P̄k(ω) =
Pk(ω)eiϑk(ω). Then, we can write the phase of G(eiωTs) as

argG(eiωTs) = argβ +

m∑

k=1

ψk(ω)−
n∑

k=1

ϑk(ω). (4.26)

Now, if we write the phase of the allpass part Gap(z) of an identified model as
in Equation (4.26) and use Equation (4.23) we arrive at the expression

T̂d = 1− unwrap(argGap(eiω1Ts))

ω1Ts
=

= 1− 1

ω1Ts
unwrap

(
argβ +

m∑

k=1

ψk(ω1T )−
n∑

k=1

ϑk(ω1Ts))

)
(4.27)

for the time-delay estimate. unwrap(·) means replacing a phase outside [−π, π]
with the corresponding phase inside [−π, π].

We will now give an example of when the DAP method works well. The linear
continuous-time system

G2(s) = e−9s 1

(s+ 1)(0.1s+ 1)
(4.28)

(same as system G2, Equation (7.3) in Section 7.3) was simulated by the function
lsim in [CST] in continuous-time with a random binary input signal with frequency
contents between 10%-30% of the Nyquist frequency. The signal was generated by
the function idinput in [SIT] and was the same as the signal “RBS 10-30% ” in
Section 7.3. To the output signal, white Gaussian noise was added and the signal-
to-noise ratio (SNR) was 10. The sampling interval was Ts = 1 and ω1 = 10−4. A
Laguerre model (Section 4.2.3) was identified from the input-output data and the
DAP method was used to estimate the time-delay. We will now step for step go
through the calculation of T̂d.

The simulation resulted in the poles and zeros of the identified Laguerre model
depicted in Figure 4.8. Table 4.1 lists ψk(ω1) and ϑk(ω1).

The time-delay estimate is

T̂d = 1− unwrap(argGap(eiω1Ts))

ω1Ts
=

= 1− 1

ω1Ts
unwrap

(
argβ +

m∑

k=1

ψk(ω1T )−
n∑

k=1

ϑk(ω1Ts))

)
=

= 1− 104 · unwrap (3.14159− 1.70495 + 1.70491 + 3.14135

−0.86837 + 0.86813− 0.00035) = 1− 104 · unwrap (6.28231)

= 1− 104 · (−0.00087114) = 9.7114, (4.29)

which is a good estimate since the true time-delay is 10.
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Table 4.1 ψk(ω1) and ϑk(ω1) in Equation (4.26) for ω1 = 10−4 for the successful
estimation (left,argβ = 3.14159), the failed estimation (middle, argβ = 0, not the
same estimated model as for the successful estimate) and after removing the real
zero just outside the unit circle (right, argβ = 3.14159, the same estimated model
as for the failed estimate).

Successful estimation Failed estimation After zero guarding

ψk(ω1) ϑk(ω1) ψk(ω1) ϑk(ω1) ψk(ω1) ϑk(ω1)

-1.70495 0.86837 -1.71186 0.84682 -1.71186 0.84682
1.70491 -0.86813 1.71182 -0.84658 1.71182 -0.84658
3.14135 0.000347 3.14125 0.000445 3.14125 0.000445

3.07613 0.06556

Figure 4.8 Pole-zero plots of two identified Laguerre models. System G2 and input
signal RBS 10-30% (Section 7.3). SNR =10. No prewhitening (Section 7.3) or zero
guarding (Section 4.2.7). The poles of the models should all be located at α = 0.8
but due to well-known numerical problems with multiple poles they are somewhat
spread. Left plot: Successful time-delay estimation (T̂d = 9.7114). Right plot:
Failing time-delay estimation (T̂d = 1321.86). This simulation was one of only 3
out of 1024 simulations with failing time-delay estimation for SNR = 10. With a
lower SNR the percentage of failing estimations is much higher. See Section 4.2.7.
(t122a1)
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We will now study a case when the time-delay estimation fails. The only differ-
ence to the successful trial in the simulation setup is a different noise realization.
The zeros and poles of the identified Laguerre model are shown in Figure 4.8. We
note that the zero on the real axis just inside the unit circle in the successful simu-
lation has moved to just outside the unit circle. We will later see what impact this
will have on the time-delay estimate. Table 4.1 lists ψk(ω1) and ϑk(ω1).

The time-delay estimate will now be

T̂d = 1− unwrap(argGap(eiω1Ts))

ω1Ts
=

= 1− 1

ω1Ts
unwrap

(
argβ +

m∑

k=1

ψk(ω1T )−
n∑

k=1

ϑk(ω1Ts))

)
=

= 1− 104 · unwrap (0− 1.71186 + 1.71182 + 3.14125 + 3.07613

−0.84682 + 0.8465− 0.000445− 0.06556) =

1− 104 · unwrap (6.1511) = 1− 104 · (−0.132086) = 1321.9. (4.30)

As can be seen, the estimate is completely wrong.

4.2.7 A solution to the problem with the DAP method

As already mentioned in the previous section, a difference between the identified
models in the successful and the failing trials was that the zero on the real axis just
inside the unit circle in the successful trial had moved to outside the unit circle.
Let us see what happens if we simply remove the moved zero from the model with
the failing estimate. This results in the ψk(ω1) and ϑk(ω1) in Table 4.1. The
remaining ψk(ω1) and ϑk(ω1) values in Table 4.1 are similar to the ones for the
successful estimation in Table 4.1.

The time-delay estimate will now be

T̂d = 1− unwrap(argGap(eiω1Ts))

ω1Ts
=

= 1− 1

ω1Ts
unwrap

(
argβ +

m∑

k=1

ψk(ω1T )−
n∑

k=1

ϑk(ω1Ts))

)
=

= 1− 104 · unwrap (3.14159− 1.71186 + 1.71182 + 3.14125

−0.84682 + 0.84658− 0.000445) = 1− 104 · unwrap (6.28212)

= 1− 104 · (−0.00106586) = 11.6586, (4.31)

which is an acceptable estimate. It is much better than in Section 4.2.6 with the
failing estimation. It seems like the only significant difference between the models
with successful and failing estimation is if a certain zero is inside or outside the
unit circle.

We will now study the uncertainty in the zeros and the time-delay estimate.
We note in Equation (4.26) that if we move a zero from inside to outside of the
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unit circle when ω = 0, then argG(eiωTs) will increase by π. If ω is not zero but
very small, the phase increase will be between 0 and π. When this extra phase is
divided by a very small ω1 in Equation (4.23), the time-delay estimate will get a
large bias that in most cases will dominate the estimate.

Figure 4.9 displays the time-delay estimate for different locations of the zero
closest to +1. If the zero is inside the unit circle the estimates are reasonable.
Outside the unit circle the estimates are poor. The worst estimates are close to
the unit circle but outside it. Farther away from the unit circle (outside it) the
estimate become better and better. The maximum possible estimation error occurs
for the maximum phase error in argGap(e

iω1Ts), which is π. The estimation error

will then be T̃d = T̂d − Td = π/ω1 = 3.1416/10−4 = 31416. In this calculation we
have assumed that only one zero falls on the wrong side of the unit circle.

Figure 4.9 Time-delay estimate for different locations of the zero closest to +1 for
a Laguerre model.(t123b1)
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The reason for zeros falling on the incorrect side of the unit circle is the noise.
Figure 4.10 shows an example of the spread of zeros and poles due to the noise.

We will now show a solution to the problem with “false zeros” of the DAP
method. It appears that moving zeros located close to but outside the unit circle
(back) to the inside of the unit circle is a solution to the problem with the DAP
method. The motivation is that we assume that these zeros actually should be
located inside the unit circle. Since we only need the allpass part in the DAP
methods, we just remove some zeros outside the unit circle without putting them
somewhere inside the unit circle. We call this technique for zero guarding.

Now we have the following questions:

• Shall only the zeros outside the unit circle close to +1 or all zeros outside
and close to the unit circle be (re)moved?

• How many zeros shall be (re)moved? Only one or perhaps several?

• What is meant by “close”?

In the Section 8.2.1 we will use a statistical technique to answer these questions.
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Figure 4.10 Pole-zero plot with estimated uncertainty regions (3 standard devi-
ations) and with zeros and poles from 1024 simulated trials for SNR = 1. As can
be seen, the risk of a zero falling on the wrong side of the unit circle is significant.
The simulation setup is as in Section 7.3 with system G2 in open loop, signal RBS
10-30%, no prewhitening and no zero guarding (see Section 4.2.7). (t125a1)
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4.3 Laguerre Domain Approximation Methods

In Laguerre domain approximation methods an approximation of the system in-
cluding the time-delay is represented in the Laguerre domain. This means that the
input, output and noise signals are transformed into the Laguerre domain, i.e. in
the basis where the basis functions are Laguerre functions. From this system repre-
sentation it is not as easy as in the time and frequency domain to get the time-delay
but can be done as we will see in this section. The signals and the system can be rep-
resented either in continuous-time or discrete-time. We describe only the discrete-
time case. The continuous-time case is described in [Fis99, FM99c, FM99a].

4.3.1 The discrete-time Laguerre domain

By taking the inverse Z-transform (Z−1 {·}) of the discrete-time Laguerre function
in the frequency domain (Equation 4.14) we get the time domain discrete-time
Laguerre functions

lk = Z−1 {Lk(z)} (4.32)

They are orthonormal in l2(0,∞). The space l2[a, b] is the space which consists of
all square summable discrete-time functions defined on an interval [a, b] with the
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inner product defined as

〈f, g〉 =

∞∑

t=0

f(t)g(t) (4.33)

for f, g ∈ l2[a, b]. The first four discrete-time Laguerre functions are depicted in
figure 4.11.

Figure 4.11 Matlab plot of the first four Laguerre functions in discrete time.

k =
[1] [2]
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, α = 0.8, sampling interval Ts = 1. (l1disc-)
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A discrete-time signal w(t) can now be represented by

w(t) =

∞∑

k=0

wklk(t), (4.34)

where the Laguerre coefficients wk are given by

wk = 〈w(t), lk(t)〉 . (4.35)
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This means that the coefficients wk describe (linearly) independent properties of
the signal w(t). Since all real signals have finite extent in the time, they belong to
l2 (for discrete-time) and can therefore be represented exactly by an infinite sum
as in Equations (4.34)-(4.35).

4.3.2 System representation in the discrete-time Laguerre
domain

For the discrete-time signal model

y(t) = u(t− d) + n(t),

where t and d only can be integer valued [Fis99], the relation between the input,
output and noise signals in the discrete-time Laguerre domain is [Fis99, FM99c]

yk =

k∑

l=0

φk,lul + nk, (4.36)

where yk, ul and nk are the Laguerre coefficients for the output, input and noise
signals, respectively. Thus, the relation between the input and the output in the
Laguerre domain can be seen as a time-varying linear filter. The time-varying
impulse response φk,l is given by [Fis99, FM99c]

φk,l = 〈GLl , Lk〉 , (4.37)

where G = G(z) = z−d and 〈·, ·〉 is the scalar product in the Z domain [FM99b].
The relation in Equation (4.36) can be rewritten as a linear regression [Fis99,

FM99c, FM99b]

yk = ϕTk Θ + nk, (4.38)

with the regression vector ϕk = [ϕk,1, . . . , ϕk,N+1]T , whose elements are

ϕk,1 = u0

ϕk,l+1 = (1−α2)l

l!(l−1)!

∑k−l
m=0(−1)k+l−mαk−2l−m (k−m−1)!

(k−m−l)! um, k ≥ l > 0

ϕk,l+1 = 0 N ≥ l > k

(4.39)

N + 1 is the total number of Laguerre coefficients and α is the Laguerre pole
(Equation 4.14). The parameter vector Θ is [FM99b]

Θ =
[

1, d, . . . , d(d− 1) · · · (d− (N − 1))
]T
αd. (4.40)

Here it is seen where the time-delay Td comes in.
In [Fis99, FM99c] a method to estimate the time-delay is suggested: Let

Y = [y0, . . . , yN ]T (4.41)
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and

Φ = [ϕ0, . . . , ϕN ]T . (4.42)

Since Φ is a square nonsingular matrix, Θ could be estimated by

Θ̂ = Φ−1Y. (4.43)

d̂ =
(
1T1

)−1
1TYd =

1

N
1T D̂ +

N − 1

2
, (4.44)

where 1 = [1, . . . , 1]T , Yd = D̂ + [0, 1, . . . , N − 1]T and D̂ = diag
(

Θ̂
)†

Θ̂. The

vector Θ̂ is given by the vector Θ̂ without the last element and Θ̂ by Θ̂ without
the first element. The symbol † means pseudoinverse. In [FM99b] also an other
method to estimate the time-delay is suggested. See also the next section.

4.3.3 Two discrete-time Laguerre domain time-delay estima-
tion algorithms

In [Fis99, FM99c, FM99b] two algorithms for the implementation of time-delay
estimation based on the system representation (4.38), (4.39)-(4.40) in the discrete-
time Laguerre domain are given. One of them uses Equation (4.44). They also
have some features to enhance the numerical properties.

The matrix Φ will not be well-conditioned for large N [Fis99]. The numerical
properties of Φ are improved by using SVD (singular value decomposition [HJ91]) to
extract the most significant part of Φ. See [Fis99, FM99a, FM99b] for details. The
number of singular values (the largest ones) to retain is a user-defined parameter.
It is in this thesis set to 5, which is chosen after some simple tests.

The time-delay d can be estimated in two ways, here called tausvd and taulp1.
In tausvd, d is estimated by least squares as in Equation (4.44). In taulp1 the
Θ estimate (Equation (4.43)) is further improved by an iterative algorithm called
MIRLS (Modified Iteratively Reweighted Least Squares) [FM99b, CCS94] before
estimating the time-delay by Equation (4.44). See Algorithms 3-4.

Several parameters must be selected by the user, most importantly the Laguerre
pole α and the number N + 1 of Laguerre functions to use. These must be selected
to suit the input and output signals and the available execution time [Fis99, FM99c,
FM99b, Bjö03e].

It is also possible to use approximation methods in other domains, e.g. the
Kautz domain [Kau54, Wah94, SBS97].

4.3.4 Approximating the signals with the Laguerre trans-
form

A necessary condition for the Laguerre domain approximation estimation methods
to be successful is that the input and output signals can be represented accurately
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Algorithm 3 tausvd: An implementation of Laguerre domain approximation
method.

1. Optimize the pole α given the input output signals: “minimizing the squared
equation error between the input signal and its approximation by a truncated
(N = 16) Laguerre series with respect to α” [Fis99, FM99b, FM99c].

2. Compute the regression matrix Φ (4.39), (4.42) and the Laguerre spectrum
Y of the output signal from the input and output signals (Eq. (4.35)).

3. Retain the most significant part Φs of the regression matrix Φ by SVD:

Φ =
[
U1 U2

] [ Σ1

Σ2

] [
V T1
V T2

]
and Φs = U1Σ1V

T
1 .

The diagonal matrix Σ1 has the largest singular values on the diagonal. The
number of used singular values in Σ1 is a user-selected parameter.

4. Estimate the parameter vector: Θ̂ = Θ†sYs, where Ys = [Y T (1 : s), 0, . . . , 0]T .

5. Estimate the time-delay : d̂ =
(
1T1

)†
1TYd

Algorithm 4 taulp1: Another implementation of Laguerre domain approximation
method.

1. Estimate the parameter vector Θ as in step 1-4 in algorithm 3.

2. Use the estimated parameter vector Θ̂ as start value to the MIRLS [FM99b,
CCS94] to improve the estimate of the parameter vector.

3. Estimate the time delay as in step 5 in algorithm 3.

in the Laguerre domain. Figure 4.12 displays the original and the Laguerre ap-
proximated input and output signals for two input signal types. The Laguerre
approximation behaves similarly to a low-pass filtering but it works best at the
beginning of the signals. We see that:

• The signal Steps is easy to approximate. The RBS signals are very hard.

• The approximations become better with more Laguerre coefficients.
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Figure 4.12 Original and Laguerre approximated input and output signal for RBS
0-100% (left) and Steps (right) with N + 1 = 51 (above) and N + 1 = 150 (below).
Laguerre pole α = 0.8, G2, SNR=100. The signals and the system are defined in
Section 7.3. N + 1 is the number of used Laguerre functions. (t222b1-t222b2)
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5
Explicit Time-Delay Parameter

Methods

In explicit time-delay parameter methods, the time-delay is an explicit parameter to
be estimated in the model. In Section 5.1 the time-delay is a continuous parameter
in a continuous-time model, while in Section 5.2 a discrete parameter in a discrete-
time model. Section 5.3 describes some sampling methods.

5.1 Continuous-Time One-Step Explicit Methods

In continuous-time one-step explicit methods, the time-delay is modeled and es-
timated as a continuous parameter in a continuous-time model. The time-delay
is thus not restricted to be a multiple of the sampling interval. See for exam-
ple [NL91, Lju02].

5.1.1 The time-delay estimation methods

Here we will describe a group of methods consists of estimating the time-delay as a
continuous parameter with the prediction error method (Section 4.1.5 and[Lju99])
in some simple model structures [Lju02] which are often used in process industry.
We sometimes call this type of methods idproc methods. The process models are:

idproc1. A first order system with time-delay.

idproc2. A second order system with real poles and time-delay.

idproc3. A second order system with complex poles and time-delay.

43
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idproc4. A third order system with real poles and time-delay.

idproc5. A third order system with two complex poles, one real pole and time-delay.

In the prediction error method (PEM) [Lju99]:

θ̂N = arg min
θ
VN (θ) = arg min

θ

1

N

N∑

t=1

1

2
ε2(t, θ), (5.1)

where ε(t|θ) = y(t) − ŷ(t|θ) is the prediction error of the model. See also Sec-
tion 4.1.5.

Since the loss function VN (θ) in Equation (5.1) has several minima [FMS96,
NL91], the initialization of the optimization problem (5.1) must be done care-
fully [Lju02]. See [Lju03, BL03] for the implementation used in the simulations
of this thesis. An alternative to accurately initialize the time-delay could be to
perform a low-pass filtering. See Section 5.1.3.

The article [NL91] contains formulas for zoh sampling of a system with time-
delay in state space form including a noise model. It also contains Matlab code
for how to implement a PEM algorithm.

5.1.2 Local minima of a first order system

We will here study the phenomenon that the loss function VN (θ) in Equation (5.1)
has several minima more closely.

Assume, both the true system and the model is of the same structure: a first
order system with time-delay:

Ḡ(s) =
K

s+ β
e−sL. (5.2)

The system sampled with the sampling interval Ts using zero-order-hold (zoh)

sampling [ÅW84] becomes

y(k) =
b1q
−1 + b2q

−2

1 + a1q−1
u(k) = G(q)u(k) (5.3)

with

b1 = K
e−β(Ts−L)

β
(e−β(Ts−L) − 1) (5.4)

b2 = K
e−β(Ts−L)

β
(1− e−βL) (5.5)

a1 = −e−βTs . (5.6)

We will denote the true system with Ḡo(s) (in continuous-time) and Go(q) (the
sampled discrete-time version of Ḡo(s)) and its parameters with b10, b20 and a10.
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The model will be denoted by Ḡ(s|L) and G(q|L) and its parameters with b1(L),
b2(L) and a1. If no other parameters than the time-delay differs between the true
system and the model, then a10 = a1(Equation (5.6) does not depend on L) . Both
the true output signal and the simulated output signal of the model are generated
according to

y(k) = G(q)u(k) +H(q)e(k).

We assume that the noise system is H(q) = 1. This gives an output error structure.
The noise e(k) is zero mean and white with variance λe. The input signal u(k) is
zero mean white noise with variance λu.

As the loss function to minimize we choose

V (L) = E{ε2(k|L)} = Var{ε(k|L)} = Rεε(0|L) (5.7)

where the residuals ε(k|L) are given by

ε(k|L) = y(k)− ŷ(k|L) = (Go(q)−G(q|L))u(k) + e(k)

with ŷ(k|L) = G(q|L)u(k) being the one-step-ahead predictor of y(k) (OE struc-
ture) given L [Lju99].

In normal circumstances, 1
2V (L) is what the loss function VN (θ) (Equation (5.1))

in the prediction error method (PEM) converges to when the number of data
N →∞ [Lju99, Th.8.2, p.254]. See also Section 4.1.5.

Assume now that the model and the true systems are stable and equal except
for the time-delay, i.e K = K0 and β = β0 > 0. Assume that the true time-delay
Lo fulfills 0 < Lo < Ts. Then the loss function for 0 < L < Ts can be calculated as

V (L) =
b̃1

2(L)− 2a1 b̃1(L)b̃2(L) + b̃2
2(L)

1− a2
1

λu +
1

1− a2
1

λe (5.8)

with b̃1(L) = b10 − b1(L) and b̃2(L) = b20 − b2(L).
By inserting Equations (5.4)-(5.6) into Equation (5.8) we get the following ex-

pression

V (L) =
(
e−β(−L0+L) − 1

)(
e−β(−L0+L) − 1− e−β(Ts−L0+L) + e−βTs

)

· 2K2e2β (−Ts+L)

β2 (1 + e−β Ts) (1− e−β Ts) (5.9)

The loss function for Ts < L < 2Ts is

V (L) =
−2b2(L− 1)a2

1b10 + 2b2(L− 1)a1b20 + 2b1(L− 1)a1b10

1− a2
1

λu

+
−2b20a1b10 − 2b1(L− 1)b20 + b1(L− 1)2

1− a2
1

+
−2b2(L− 1)a1b1(L− 1) + b210 + b220 + b2(L− 1)2

1− a2
1

λu +
1

1− a2
1

λe
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Figure 5.1 The loss function (without the term due to the noise e(k)) for 0 < L <
2Ts when the true time-delay is 0.1Ts. The right graph is a zoom-in on the left
one. (K = K0 = 1, β = β0 = 2 ) (idproclossfunc4-6)
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Figures 5.1-5.3 show the loss function V (L) for 0 < L < 2Ts when the true time-
delay is 0.1Ts, (2/3)Ts 0.9Ts and 0.9999Ts. We see that there is more than one
minimum but within 0 < L < Ts it seems to be only one minima. This means that
we have to know the integer part of L/Ts. This is in accordance with [NL91].

In Figure 5.3 we also see that for a true delay very close to a multiple of the
sampling interval (0.9999Ts in the figure) we must start very close to the true value,
if starting on an unsuitable side, not to miss it.

We will now prove that there is exactly one minimum of V (L) within 0 < L <
Ts. The first derivative of the loss function in Equation (5.9) is

dV (L)

dL
= −4

K2
(
eβ(L0+L−2Ts) − eβ(L0+L−3Ts) − e2β(−Ts+L) + eβ(−3Ts+2L)

)

β (1 + e−βTs) (1− e−βTs)

= −4
K2eβ(L−2Ts)

(
(eβL0 − eβL)− (eβ(L0−Ts) − eβ(L−Ts))

)

β (1 + e−βTs) (1− e−βTs)

= −4
K2eβ(L−2Ts) (χ(L0, L)− ψ(L0, L))

β (1 + e−βTs) (1− e−βTs) , (5.10)

where χ(L0, L) = (eβL0 − eβL) and ψ(L0, L) = (eβ(L0−Ts) − eβ(L−Ts)). We notice
that

χ(L0, L) > 0 when L < L0

χ(L0, L) < 0 when L0 < L

ψ(L0, L) > 0 when L < L0

ψ(L0, L) < 0 when L0 < L

and that |χ(L0, L)| > |ψ(L0, L)| since Ts > 0 and the exponential function has a
monotonically increasing derivative. From this follows χ − ψ > 0 when L < L0
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Figure 5.2 The loss function (without the term due to the noise e(k)) for 0 < L <
2Ts when the true time-delay is (2/3)Ts (left) and 0.9Ts (right). (K = K0 = 1,
β = β0 = 2 ) (idproclossfunc1-3)
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and χ − ψ < 0 when L0 < L. This together with the fact, that all other factors

in Equation (5.10) are positive except for the constant −4, means that dV (L)
dL < 0

for L < L0 and dV (L)
dL > 0 for L > L0. The loss function V (L) is thus quasi-

convex [BV03] and has only a single minimum within 0 < L < Ts, which is at L0.
This is valid for the assumptions above., e.g. the input signal is white noise. The
quasi-convexity within the sampling interval means that no matter how close to the
true time-delay the optimization is started there are still cases when we will end in
an incorrect local minimum. Therefore, not even close to the true time-delay the
Cramer Rao lower bound [Kay93, JD93] is always useful.

For convex loss functions there exist very efficient optimization algorithms [BV03].
Therefore, we will now investigate if V (L) is convex. The second derivative of the
loss function in Equation (5.9) is

d2V (L)

dL2
= 4

K2
(
−eβ(L0+L−2Ts) + eβ(L0+L−3Ts) + 2 e2β(−Ts+L) − 2 eβ(−3Ts+2L)

)

(1 + e−β Ts) (1− e−β Ts)

= 4
K2eβ(L−2T )g(L)

(1 + e−β Ts) (1− e−β Ts) . (5.11)

The loss function V (L) is convex if and only if its second derivative is positive
everywhere (0 < L < Ts). It is easy to see that all parts, except maybe the
function g(L), of the last formula in Equation 5.11 always are positive. Therefore
we can concentrate on the function g(L) when determining whether the second
derivative is positive everywhere. In the example plot of g(L) in Figure 5.4 we see
that the loss function is not convex between the sampling instants. This can also
nearly be seen in Figure 5.2 which is a plot of the corresponding loss function. In
Figure 5.3, which depicts another loss function V (L) it is easier to see that V (L)
is not convex.
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Figure 5.3 The loss function (without the term due to the noise e(k)) for 0 < L <
2Ts when the true time-delay is 0.9999Ts. The right graph is a zoom-in on the left
one. (K = K0 = 1, β = β0 = 2 ) (idproclossfunc5-2)
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5.1.3 Widening the region of convergence by low-pass filter-
ing

One idea to increase the region around the global minimum of V (L) with no local
minima would be to use a longer sampling period. This can be done by down-
sampling the already collected signals. An essential part of this down-sampling
would be, of course, a low-pass (LP) filtering to avoid sampling aliasing. For the
sake of the region around the global minimum of V (L) it should be possible to
omit the actual reduction of the number of samples and only apply the LP filtering
as in [FMS91]. Note, however, that down-sampling the input and output signals
violates the prerequisites for the zoh sampling, which requires the input signal to
be constant between the sampling instants. If we sample down after the data has
been collected, the input signal was not constant between the new down-sampled
sampling instants.

The article [FMS96] treats the question of multiple minima of the loss function
and LP-filtering in more detail. The conclusions are that suitable LP-filtering
increases the region of convergence but also reduces the convergence speed and
increases the possible bias due to modeling errors of the rest of the system.

In [FMS96] the following sampled (zoh) system is used:

y(k) = G(q)q−du(k) +H(q)e(k), (5.12)

where G(q) and H(q) are proper rational transfer functions. The system G(q) is
the sampled version of Ḡ1(s) · e−sεTs , where Ḡ1(s) is a proper rational function
of s. The total time-delay is denoted Td = (d + ε)Ts with d being an integer and
ε ≥ 0. The noise e(k) is a sequence of random and independent variables which are
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Figure 5.4 The function g(L), which is a part of the second derivative in Equa-
tion 5.11 of the loss function in Equation 5.9, for 0 < L < Ts when the true
time-delay is (2/3)Ts. (K = K0 = 1, β = β0 = 2 ) (t300)
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uncorrelated with u(k). The criterion to minimize is

V2(d, ε) =
∞∑

k=−∞
ε2(k|d, ε), (5.13)

where ε(k|d, ε) = y(k)− ŷ(k|d, ε) is the prediction error and ŷ(k|d, ε) is the one-step
predictor of the system output. If ε(k|d, ε) is ergodic and has time extent Tε, the
functions V (L) and 1

Tε
V2(d, ε) in Equations (5.7) and (5.13), respectively, are the

same.
If the region where the true time-delay can be located, the uncertainty region,

is known, the following theorem [FMS96] can be used to check if the LP filter gives
the required region without local minima.

Theorem 5.1
Assume the model structure (5.12), the loss function (5.13), that the output signal
y(k) is sampled without aliasing, that the the input and output are filtered through
the filter L(q) before the time-delay estimation and that noise system H(q) is
known. The loss function is then

V2(T̃d) = 2
(
Rww(0)− R̃ww(T̃d/Ts)

)
, (5.14)

where T̃d = Td−Td0 is the error in the time-delay and Rww(k) is the autocorrelation
function of the signal w(k) = L(q)H−1(q)y(k). The quantity Td0 is the true time-
delay. R̃ww is given by

R̃ww(τ) =

∞∑

k=−∞
Rww(k)

sin(τπ − kπ)

τπ − kπ . (5.15)
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Note that in Equation (5.14), only the difference T̃d between the estimated and
true time-delay matters and that T̃d is not restricted to multiples of the sampling
interval but can take any value.

In the special case when L(eiωTs)H−1(eiωTs)Ḡ(iω) is an ideal LP filter with
cutoff frequency ωb and the input signal is white noise, [FMS96] shows that the
cutoff frequency of the LP filter should be selected as

ωb .
4.49

∆Td
,

where ∆Td is the largest time-delay uncertainty. The rational part of the sampled
system G(q) is assumed known.

In the case of aliasing by the sampling and/or poor filtering, [FMS96] say that
there may be many local minima, each belonging to a sampling interval.

Another way to accomplish the “widening of the sampling interval” without
down-sampling could be to let the input signal be of low-pass type. This is similar
but not equivalent to LP-filtering the input-output data (see [Lju99, p. 266-267,
466-468]).

5.2 Discrete-Time One-Step Explicit Methods

In discrete-time one-step explicit methods, the time-delay is modeled and estimated
as a discrete parameter in a discrete-time model. Estimating several models, e.g.
ARX models, with a complete set of time-delays and choosing the best is of this
subclass ([Swa99, IHD00]). An exhaustive search is thus performed in the time-
delay dimension. This subclass of methods is here also called arxstruc type methods.
All methods described in this section are of this subclass. In Section 5.2.1 ARX
models are utilized, in Section 5.2.2 OE models and in Section 5.2.3 prefiltered
ARX models.

5.2.1 Arxstruc

In the method arxstruc several ARX models [Lju99]

A(q)y(t) = B(q)u(t− nk) + e(t)

are estimated with PEM (Prediction Error Method) ([Lju99] and Section 4.1.5)
for different time-delays nk. PEM is here equal to Least Squares Estimation
(LSE) [Lju99]. The delay whose model has the lowest loss function is chosen.
The estimation is quick since the ARX model can be written as a linear regression
and can be estimated by solving a linear equation system [Lju99]. See Algorithm 5
for Matlab code using the Matlab System Identification Toolbox.
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Algorithm 5 Matlab code for arxstructd using the Matlab System Ident. Tool-
box.

function dtEst = arxstructd(zIn);

zIn = [outSig, inSig];

na = 10; nb = 5; nkVec = 1:20;

nkMax = length(nkVec);

nn = [na*ones(nkMax,1), nb*ones(nkMax,1), nkVec’];

V = arxstruc(zIn,zIn,nn);

modelStruc = selstruc(V,0);

dtEst = modelStruc(3);

Algorithm 6 Matlab code for oestructd using the Matlab System Ident. Toolbox.

function dtEst = oestructd(zIn);

zIn = [outSig, inSig];

nf = 2; nb = 1; nkVec = 1:20;

for nnn = 1:length(nkVec),

model = oe(z,[nb nf nkVec(nnn)], ’Covariance’,’None’)

lossFunc(nnn) = model.NoiseVariance;

end%for

[minVal, nnnmin] = min(lossFunc);

dtEst = nkVec(nnnmin);

5.2.2 Oestruc

The principle of the methods oestruc is the same as for arxstruc but OE (output
error) models [Lju99]

y(t) =
B(q)

F (q)
u(t) + e(t)

are estimated instead of ARX models. To estimate OE models is much more com-
putationally demanding than ARX models since a multidimensional optimization
with a numerical search must be carried out [Lju99]. See Algorithm 6 for Matlab
code using the Matlab System Identification Toolbox.

5.2.3 Met1struc

The method oestruc gives a better result than arxstruc in the simulations presented
in this thesis (see Sections 8.5.1 and 9.1-9.3). On the other hand, arxstruc has a
much lower computation time than oestruc (Section 9.4). In this section we suggest
a new time-delay estimation method with the aim to imitate oestruc but with much
lower computational demands.
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Assume the true system is given by

y = G0u+H0e ,

where G0 and H0 are rational functions in the delay operator q−1. The noise e is
white. The model structure used to estimate the true system is

y = Gu+He ,

where G and H also are rational functions.
The reason for the difference between OE and ARX model structures can be

two-fold:

1. If the model structure G cannot exactly describe the true system G0, the
estimated model G will have a bias, even if the number of data N →∞. The
OE and ARX model structures will behave differently in open loop [Lju99,
Ex. 8.5, p. 268-269]:

• The ARX model structure will give models with a good fit to the true
system at high frequencies.

• The OE model structure will give models with a good fit to the true
system at low frequencies if the input is of low frequency character.

2. If the model structure G can exactly describe the true system G0, again the
OE and ARX model structures behave differently in open loop:

• The ARX model structure will give models G with a bias if the noise
model structure 1/A cannot describe the true noise systemH0. See [Lju99,
eq. 8.63,8.69, p. 267].

• The OE model structure will give estimates without bias. The bias of
the OE model structure is thus not dependent on the noise model. See
[Lju99, Eq. 8.71, p. 266].

We propose the time-delay estimation method in Algorithm 7. The motivation for
this method is the following. Assume the true system is given by

y = G0u+H0e =
B0

F0
u+

C0

D0
e ,

where G0 and H0 are rational functions and B0, F0, C0 and D0 are polynomials in
the delay operator q−1. The noise e is white.

Estimate a first model

y =
B1

F1
u+

C1

D1
e (5.16)

where F1, B1, C1 and D1 are polynomials in q−1, i.e. a Box-Jenkins model [Lju99].
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Algorithm 7 Proposed time-delay estimation method (prefiltered arxstruc).

1. Estimate an ARMAX model A1(q)y(k) = B1(q)u(k) + C1(q)e(k).

2. Prefilter u and y through 1/C1(q) .

3. Arxstruc gives an estimate of nk.

The model C1/D1 will be an approximation of H0 = C0/D0. Then, filter the
output signal y through D1/C1 giving yF :

yF =
D1

C1
y =

D1

C1

(
B0

F0
u+H0e

)
=
B0

F0

D1

C1
u+H0

D1

C1
e =

B0

F0
uF +H0

D1

C1
e ,

(5.17)

where uF = uD1/C1 is the input signal u filtered through D1/C1. Now, if the
polynomials F1, B1, C1 and D1 in the model structure 5.16 have high enough
orders so that that they can exactly describe the true system and the input-output
data is informative enough, then F1, B1, C1 and D1 will converge to the true values
F0, B0, C0 and D0 as the number of data N → ∞ [Lju99, p. 273]. When this
happens, D1/C1 = 1/H0 and Equation 5.17 simplifies to

F0yF = B0uF + e , (5.18)

where e as before is white noise. This true system is obviously an ARX system.
This means that if we estimate an ARX model AyF = BuF + e, there will be no
bias due to an incorrect noise model. If an ARX model has high enough orders, we
can get a model for the system G without bias (as in the case with an OE model
of high enough orders).

Let us now assume that the true system instead has OE structure:

y = G0u+H0e =
B0

F0
u+ e ⇒ F0y = B0u+ F0e. (5.19)

As this at the same time has ARMAX structure [Lju99] we estimate a first model

A1y = B1u+ C1e , (5.20)

where A1, B1 and C1 are polynomials in q−1. A1 and C1 will be approximations of
F0. If we filter the input and output signal through 1/C1 we will get the following
true system

F0yF = B0uF + e , (5.21)

which is also of ARX structure and can be approximated by an ARX model of high
enough model order without bias.
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Algorithm 8 met1struc, the prefiltered arxstruc.

1. Estimating a state space model by state space method.

2. Converting to A1(q)y(k) = B1(q)u(k) + C1(q)e(k) .

3. Prefiltering u and y through 1/C1(q) .

4. Arxstruc gives an estimate of nk.

Algorithm 9 Matlab code for met1struc using the Matlab System Identification
Toolbox. The function arxstructd is described in Section 5.2.1.

function dtEst = met1structd(inSig, outSig, Ts)

order = 10;

modelSs = n4sid(iddata(outSig, inSig, Ts),...

order,’cov’,’none’);

[A,B,C,D,F] = polydata(idpoly(modelSs));

BFilt = 1;

AFilt = C;

uFilt = filter(BFilt,AFilt,inSig);

yFilt = filter(BFilt,AFilt,outSig);

zIn = [yFilt, uFilt];

na = 10; nb = 1; nkVec = 1:20;

dtEst = arxstructd(zIn,nkVec,na,nb);

Since the systems employed in most simulations in this thesis (Section 7.3) have
OE structure (Equation (5.19)), we will filter the input and output signals through
1/C1 where C1 is from Equation (5.20).

In Algorithm 7 the first step is to estimate an ARMAX model. Unfortunately,
the standard way to estimate a model of this structure also requires a numerical
search as with the OE model which we tried to avoid. Another way is to first
estimate a state space model and then convert it to an ARMAX model. This
conversion will be possible if the order of the state space model and the orders
of the polynomials A1, B1 and C1 are high enough to describe the true system.
The state space model can be quickly estimated by a subspace method [Lju99].
See Algorithm 8 for the resulting method, which we call met1struc. Matlab code
for met1struc is given in Algorithm 9. The order of the state space model is 10.
This will hopefully be enough for most systems. The orders of A1, B1 and C1 will
depend on the order of the state space model.
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5.3 Sampling Methods

Sampling methods utilize the sampling process to estimate the time-delay. For
example, zero-order-hold (zoh) sampling of a system with subsample time-delays
creates an extra zero [FMS91] as we will see soon.

5.3.1 Principles

We start with an example of sampling a simple system without time-delay. We
consider the following continuous-time system:

Ḡ(s) =
K

s+ β
. (5.22)

The system sampled with the sampling interval Ts using zero-order-hold (zoh) sam-

pling, i.e. the input signal is constant between the sampling instants, (see[ÅW84,
GL97]) becomes :

G(q) = µ
(1− p)
(q − p) , (5.23)

with

µ = K/β (5.24)

and

p = e−βTs . (5.25)

The letter q is the discrete-time-delay operator, i.e. q−1 is a delay of one sample.
When zoh sampling of a continuous-time system with a time-delay which is a

fraction of a sampling interval is performed, a zero in the discrete-time system will
arise due to the time-delay [ÅW84, p. 40]. We now will see what happens at the
sampling when a time-delay is added to the previous example.

Assume that we have the same continuous-time system as in Equation (5.22)
but now with a time-delay 0 < L < Ts:

Ḡ(s) =
K

s+ β
e−sL = Ḡ1(s) · e−sL. (5.26)

The system sampled with the sampling interval Ts using zoh sampling becomes (cf.
Section 5.1.2)

G(q) =
b1q
−1 + b2q

−2

1 + a1q−1
= µ

(1− p)
(q − p) ·

((1− α)q + α)

q
. (5.27)

The quantities a1, b1 and b2 are given by Equations (5.4)-(5.6) and µ and p by
Equations (5.24) and (5.25). The quantity α is given by

α =
eβL − 1

1− p p. (5.28)
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We see from Equations (5.23) and (5.27) that the result of the time-delay after the
sampling is a pole in zero and an additional zero:

z0 = − α

(1− α)
. (5.29)

If the time-delay is longer, d ·Ts < dTs+L < (d+1) ·Ts, (L is thus the fractional

part of the time-delay), the sampled system will be [ÅW84, FMS91]

G(q) =
b1q
−1 + b2q

−2

1 + a1q−1
q−d = µ

(1− p)
(q − p) ·

((1− α)q + α)

q
q−d. (5.30)

The only difference to Equation (5.27) is the extra factor q−d because of the integer
part d ·Ts of the time-delay. The zero due to the fractional part L of the time-delay
is the same as before (Equation (5.29)).

The sampled version of a proper rational continuous-time system with m zeros
and n poles has generically n − 1 discrete-time zeros, some of which may go to
infinity or be canceled by poles [ÅSH84]. The sampled version of a continuous-
time system can have zeros due to three reasons:

1. Zeros of the continuous-time system [ÅSH84].

2. Zeros created by the sampling process for a continuous-time system without
fractional time-delay. Some of these zeros may be “unstable”, i.e. be outside
the unit circle. Whether they are outside the unit circle, depends on n −m
and the sampling interval Ts. If n −m < 2 or the sampling interval is long
enough, these zeros are always inside the unit circle. See [ÅSH84].

3. Zeros created by the sampling process for a continuous-time system with
fractional time-delay [FMS91, ÅW84].

In [FMS91] it is said that “sampling zeros”, of type 2 above, does not significantly
affect the result of the estimation. This conclusion is based upon a simple example.

5.3.2 Recursive TIDEA

In [FMS91] the fact that α→ L/Ts = ε when Ts → 0 is utilized. We call ε the nor-
malized fractional time-delay. Using this we see that the zero z0 (Equation (5.29))
of the system in Equation (5.27) can be written

z0 = − α

(1− α)
≈ − ε

1− ε

for small sampling intervals. We can solve for ε in this expression:

ε =
1

1− z0
.
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In [FMS91] an extended model structure, compared to Equation (5.30) is employed:

G(q) = q−(d+1) b2q
2 + b1q + b0
AR(q)

, (5.31)

where AR(q) is a polynomial in q with a high enough degree.
This model structure (due to the numerator b2q

2 + b1q + b0) can handle nor-
malized fractional time-delays −1 < ε < 1, not only 0 < ε < 1 as in Section 5.3.1,
without changing the normalized integer part d of the time-delay.

Also, higher order true systems than a first order system as in Section 5.3.1
can be modeled thanks to the denominator AR(q). Requirements for this is that
the true continuous-time system does not have any zero on the imaginary axis
and that the sampling interval is small enough. If the true time-delay is wanted,
the polynomial AR(q) should have a high enough degree for 1/AR(q) to accurately
describe the rational part Ḡ1(s) of the time-delay system. On the other hand, if the
role of the time-delay is to adjust the phase of the model in an important frequency
range, AR(q) can have a low degree. Compare with Section 1.1.

In [FMS91] time-delay estimation method, called TIDEA (TIme Delay Estima-
tion Algorithm), based on the above, is presented. The model (5.31) is estimated
recursively. TIDEA also contains a special mechanism for adjusting the normalized
integer part d of the time-delay. See [FMS91] for details. According to [FMS91],
the global convergence of TIDEA is still not proved. We did not succeed to imple-
ment the method without it diverging. Therefore we have no simulation results for
this method.

5.3.3 Exact time-delay from the sampling process

The zero-order-hold sampling of the model structure (5.26) is described in Sec-
tion 5.3.1. Assume that all model parameters except for the time-delay are known.
From Equations (5.25), (5.28) and (5.29) it is easy to solve for the fractional time-
delay L:

L =
1

β
ln

(
1− eβTsz0

1− z0

)
(5.32)

Note, that this expression does not require that Ts → 0 as in TIDEA (Section 5.3.2).
The integer part of the time-delay must be estimated in some other way, e.g. as in
TIDEA or with oestruc (Section 5.2.2).

In [ÅSH84] the system

Ḡ(s) =
1

s
esL

is zoh sampled, giving

G(p) =
(Ts − L)q + L

q(q − 1)
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with the zero

z0 = − L

Ts − L
. (5.33)

By solving for the fractional time-delay L in Equation (5.33), we get

L =
z0Ts
z0 − 1

.



6
Area, Moment and Higher-Order

Statistics Methods

Area and moment methods (Sections 6.1-6.3) utilize relations between the time-
delay and certain areas above or below the step response s(t) and certain moments
of the impulse response h(t) (integrals of the type

∫
tnh(t)dt). Higher-order statis-

tics (HOS) methods (Section 6.4) use HOS to discriminate between symmetric
probability distribution, e.g. Gaussian, and non-symmetric. They are are suitable
when desired and undesired signals differ in this aspect.

6.1 Area Methods

In [ÅH95] some methods for identifying simple process models of the kind

G(s) =
K

1 + sT
esL (6.1)

and

G(s) =
K

(1− sT )2
esL (6.2)

are described. Part of this identification is the estimation of the time-delay L,
which is what we are interested in here.

Area methods [ÅH95] use area calculations of a step response s(t). First the
average residence time Tar is calculated as

Tar =
A0

K
,

59
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where K = s(∞) is the static gain and the area A0 is calculated from

A0 =

∫ ∞

0

(s(∞) − s(t))dt. (6.3)

The average residence time is a rough measure of the time for the step response to
finish. Then we calculate

A1 =

∫ Tar

0

s(t)dt. (6.4)

For the first order model (6.1) the time constant is then given by

T =
e1A1

K
. (6.5)

The time-delay is

L = Tar − T.

For the second order model (6.2) the time constant is given by

T =
e2A1

4K
(6.6)

and the time-delay is

L = Tar − 2T.

See [ÅH95] for the derivation of these area methods. In [ÅH95] they use a real step
response from a step response experiment when identifying the system with these
methods. In this thesis we will use an arbitrary input signal and first estimate the
step response before applying the methods.

6.2 Moment Methods

In moment methods [ÅH95] we interpret the normalized impulse response

f(t) =
h(t)∫∞

0
h(t)dt

of the system as a probability density function. The quantity h(t) is the impulse
response. Then we can call the quantities

mn =

∫ ∞

0

tnf(t)dt (6.7)

the moment of order n. For the first order model (6.1) the static gain is given by

K =

∫ ∞

0

h(t)dt.
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The average residence time will be

Tar = m1 (6.8)

and the time constant is solved from

T 2 = m2 − T 2
ar.

The time-delay is as for the corresponding area method:

L = Tar − T.

For the second order model (6.2) K and Tar is calculated as for the first order
model. The time constant is solved from

T 2 =
1

2
m2 −

1

2
T 2

ar

and the time-delay given by

L = Tar − 2T.

See [ÅH95] for the derivation of these moment methods. In [ÅH95] these methods
require an impulse response experiment to be performed. In this thesis we will use
arbitrary input signals and then estimate the impulse response before employing
the moment methods above.

In [ÅH95] an other method is described that, by using moments of the input u(t)
and output signals y(t), can be used with any signal that decays quickly enough.
A variant of this method is also described that can give an approximative model
when using input and output signals that do not decay but are bounded by eαt

for large t, where α is a user-chosen parameter which influence the accuracy of the
approximation.

6.3 An Area and Moment Method with Better

Noise Properties

In [Ing03] it is noticed that in the calculation of moments, like Equation (6.7), the
values of h(t), u(t) or y(t) at late times in the integration will have a higher weight
tn. This will give a rapidly decreasing signal to noise ratio (SNR) for late times,
since the noise level is about constant for all times but the signal is decaying. This
results in inaccurate estimates of the moments. This is probably a major reason
for the poor performance of the moment methods, described in Section 8.6.

In [Ing03] a modified area and moment method for the first order system (6.1)
is described. By defining the signals yd(t) = d

dty(t) and ud(t) = d
dtu(t) the factor

t in the integral m1 (6.7) in Equation (6.8) disappears giving integrals of only
u(t) and y(t) for the calculation of Tar. By computing the time constant T from
Equation (6.5) in the area method for the first order system, also the second order
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moment integral is avoided. The identification data are collected by a combination
of a setpoint change experiment in closed loop and a step response experiment in
open loop.

This method could be called a combined area and moment method. It could
also be called a pure area method because that is what the result is.

6.4 Higher-Order Statistics Methods

For the signal model

x(t) = u(t) + n1(t)

y(t) = u(t− Td) + n2(t) (6.9)

(problem 2b in Section 2.1) Nikias and Pan suggest in [NP88] time-delay methods
employing higher-order statistics (third order cumulants and cross cumulants and
bispectrum and cross bispectrum). Conditions are, however, that the interesting
signal u(t) has a non-symmetric probability distribution (Gaussian not allowed) and
the noises n1(t) and n2(t) have symmetric probability distributions, e.g. Gaussian.
The noises can be temporally and spatially correlated. Correlation based methods
have problems with spatially correlated noise [Mat98, NM93].

Assume that u(t) is a zero mean, stationary random process with non-zero
skewness (non-symmetric probability distribution). Assume that n1(t) and n2(t)
are zero mean, Gaussian, stationary random processes. n1(t) and n2(t) may be
correlated but they are independent of u(t). With the signal model (6.9) and the
above assumptions we have the following relations [NM93, NP88]:

Rxxx(τ, ρ) = Ruuu(τ, ρ) (6.10)

Rxyx(τ, ρ) = Ruuu(τ − Td, ρ), (6.11)

where the 3rd order (cross) moment is defined Rxyz(τ, ρ) = E {x(t)y(t + τ)z(t+ ρ)}.
The time-delay can be found from these equations by finding a maximum in the
2D time domain (τ, ρ) or study the phase in the frequency domain. By 2D Fourier
transform of Equations (6.10)-(6.11) we get the (cross) bispectra

Φxxx(ω1, ω2) = Φuuu(ω1, ω2)

Φxyx(ω1, ω2) = Φuuu(ω1, ω2) · eiω1∆t.

These two types of methods (2D time domain and 2D frequency domain) are
similar to the two subclasses time domain approximation methods and frequency
domain approximation methods of the class time-delay approximation methods. Per-
haps also the HOS method class should be divided in the two subclasses 2D time
domain HOS and 2D frequency domain HOS methods.



Part II

Comparison and properties
of time-delay estimation

methods

63





7
Simulation Setup and Analysis

Simulations have been conducted in Matlab in order to experimentally study
time-delay estimation (TDE) methods. Both open loop and closed loop simulations
were executed. The circumstances or factors were slightly different for the open
loop and closed loop simulations. First in this chapter, a short presentation of
some approaches to perform experiments are given. Second, a short description
of the implementation of the investigated time-delay estimation methods is given
in Section 7.2. Then the open loop simulations are described in Section 7.3 and
after that the closed loop simulations in Section 7.4. Finally, analysis methods are
described in Section 7.5.

7.1 Factorial Experiments

Assume that we have a system (not necessarily a dynamic system) or process that
we want to study and draw conclusions about. We want to know how one or several
factors influences the output (the result) of the system. Each factor has two or more
possible levels (values). Often we want to know the factor level combination that
in some sense gives the best result. When performing experiments with the aim to
draw conclusions about the system, several approaches are possible:

In the best-guess approach one factor at a time is changed while the other
factors are kept at their previous levels. This approach works reasonable well if
the experimenter already has knowledge and experience of the system. There are,
however, some drawbacks: It can take a long time to find an acceptable combination
of factor levels and it is not certain that the best combination is found.
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In the one-factor-at-a-time approach one factor at a time is varied over its pos-
sible range while the other factors are kept at base-line levels. This approach has
some drawbacks. The main drawback is that it does not discover interactions be-
tween factors. Interactions are common and when they occur this approach usually
gives poor results. This approach is also less efficient (needs more observations)
than some other approaches.

In the factorial approach the factors are varied together instead of one at a
time. Advantages with this approach are: 1) It can discover interactions between
factors and thereby avoid misleading conclusions. 2) It is more efficient (needs
fewer observations) than approaches where only one factor is changed at a time.
3) Conclusions of a factor can be drawn that are valid over a range of levels of the
other factors. In this thesis the factorial approach, giving factorial experiments , is
used.

The material of this section has been taken from [Mon97].

7.2 Implementation of Estimation Methods

Here, a short description is given of the implementation of the time-delay estimation
methods used in simulations in this thesis.

First, time domain approximation methods (Section 4.1) are listed. The meth-
ods idimp4, idstep4, idimpCusum3, idstepCusum3, idimp5, idstep5, idimpCusum4 and
idstepCusum4 are implementations of direct and CUSUM thresholding of estimated
impulse and step responses (Algorithm 2). Implementation details can be found
in [Bjö03b].

idimp4, idstep4. These method threshold directly the impulse and step response
estimates (Section 4.1.2 and 4.1.6 and Algorithm 2), respectively. The number
of estimated coefficients is 70. The thresholds are h(t) = hstd · ŷstd(t), where
hstd is a user selected constant and ŷstd(t) is the estimated standard deviation
of the impulse or step response estimate, respectively. If none of the estimated
coefficients reach above h(t) then a “missed detection” is recorded.

idimp5, idstep5. Since hstd (Algorithm 2) in idimp4 and idstep4 are difficult to
choose manually to suit all input signal types and SNRs, they have been cho-
sen by a simulation study (Section 8.1.1 and reference [Bjö03b]) to hstd = 5 for
both idimp5 and idstep5. This would give a confidence interval with a confidence
level of 100.0% if <the residuals> the impulse or step response estimates are
Gaussian distributed (which is a good assumption, see [Lju99]) and the estimate
of the standard deviation of the impulse or step response estimate is accurate.
The input signal was prewhitened (Section 7.3) for idimp5 even if it turns out
that does not matter (Section 8.1.1). idstep5 do not use prewhitening.

idimpCusum3, idstepCusum3. For low SNR the estimated impulse and step responses
are very noisy (Figure 4.3 and [Bjö03b, KG81]). In an attempt to mitigate this
the methods idimpCusum3 and idstepCusum3 use CUSUM (cumulative sum)
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thresholding (Algorithm 2), which is a nonlinear averaging operation (Sec-
tion 4.1.3). The user-selected parameters in CUSUM are the relative drift νstd

and the relative threshold hstd. The used (absolute) drift and threshold are
ν = νstd · ŷstd(0) and h = hstd · ŷstd(0).

idimpCusum4, idstepCusum4. Because the relative drift νstd and threshold hstd

are difficult to select manually, they have also been chosen by a simulation
study [Bjö03b] to νstd = 1 & hstd = 3 for idimpCusum4 and to νstd = 6 &
hstd = 1 for idstepCusum4. The input signal was prewhitened for idimpCusum4,
even if this does not have a large effect [Bjö03b]. idstepCusum4 does not use
prewhitening.

kurz. Another approach to the thresholding is employed in [KG81] and its imple-
mentation is here called kurz.

Frequency domain approximation methods (Section 4.2):

lagudap. The DAP method (Section 4.2.5) applied to a Laguerre model (Section
4.2.6) with 10 terms in the sum (nlag = 10) and the Laguerre pole α = 0.8.

firdap. The DAP method applied to a FIR model y(t) = B(q)u(t) + w(t) with 15
taps (the order of the B(q) polynomial).

arxdap. The DAP method applied to an ARX model y(t) = (B(q)/A(q))u(t) +
(1/A(q))w(t) with the order of the A(q) polynomial na = 4, the order of the
B(q) polynomial nb = 15 and the number of time-delays nk = 0.

oedap. The DAP method applied to an OE model y(t) = (B(q)/F (q))u(t) + w(t)
with the order of the B(q) polynomial nb = 15, the order of F (q) polynomial
nf = 2 and the number of time-delays nk = 0.

lagucont1. See Section 4.2.4. Laguerre model (Section 4.2.6) with 10 terms in the
sum (nlag = 10) and the Laguerre pole α = 0.8. No zero guarding .

lagudap2. The DAP method (Section 4.2.5) applied to a Laguerre model (Sec-
tion 4.2.6) with 10 terms in the sum (nlag = 10) and the Laguerre pole α = 0.8
with zero guarding (Section 4.2.7) with ZType=+1, ZSize=0.15 and ZNo=3
(Section 8.2.1). No prewhitening (Section 7.3).

firdap2, arxdap2, oedap2. As lagudap2 but with replacing the Laguerre model with
a FIR (15 taps), ARX (na = 4, nb = 15) or output error (nf = 2, nb = 15)
model [Lju99].

Laguerre domain approximation methods (Section 4.3):

fischer1, fischer2, fischer3, fischer4, fischer5, fischer6, fischer7, fischer8. See Section
4.3.3. Table 7.1 contains the used parameters. For fischer1-fischer4 the pole
was chosen to α = 0.6 or α = 0.8 (see [Bjö03e]). For fischer5-fischer8 the pole
position 0.995 was selected according to [Fis99, FM99b, FM99c]: “by minimizing



68 Chapter 7 Simulation Setup and Analysis

Table 7.1 Parameters of the implemented Laguerre domain approximation meth-
ods. The number of used Laguerre functions is N + 1. “# sing.vals” means the
number of retained singular values in Algorithm 3 (page 41).

Name N + 1 Algorithm Pole α # sing.vals

fischer1 51 tausvd 0.8 5
fischer2 51 taulp1 0.8 5
fischer3 150 tausvd 0.6 5
fischer4 150 taulp1 0.6 5
fischer5 51 tausvd 0.955 5
fischer6 51 taulp1 0.955 5
fischer7 150 tausvd 0.955 5
fischer8 150 taulp1 0.955 5

the squared equation error between the input signal and its approximation by a
truncated (N = 16) Laguerre series with respect to α”. The algorithms tausvd
and taulp1 (Algorithm 3 and 4) were employed.

Continuous-time one-step explicit methods (Section 5.1). These are here also called
idproc methods.

idproc1, idproc2, idproc3, idproc4, idproc5. Methods using simple process models
(Section 5.1.1) and with/without prewhitening of the input signal (Section 7.3)
. An upper limit of the estimates is 30.

idproc6, idproc7. Use the first order and second order process models (Section 5.1.1),
respectively. An upper limit of the estimates is 30. No prewhitening of the input
signal (Section 7.3) was used.

Discrete-time one-step explicit methods (Section 5.2):

arxstruc, oestruc, met1struc. These methods are described in Sections 5.2.1, 5.2.2
and 5.2.3 respectively. The model orders (Section 5.2) and with/without pre-
whitening (Section 7.3). could be chosen.

oestruc3, arxstruc3, met1struc3. The methods arxstruc, oestruc, met1struc with
model orders [Lju99], (nf = 2, nb = 1), (na = 10, nb = 5) and (na = 10,
nb = 1) and without prewhitening the input signal (chosen in Section 5.2).

Two-step explicit methods (Section 3):

elnaggar. This is a recursive discrete-time two-step method [EDE89].

Area and moment methods (Sections 6.1-6.2):
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area1, moment1. The area and moment methods in Sections 6.1-6.2 on estimated
step and impulse responses (Section 4.1.2). Parameters to choose were with/
without prewhitening of the input signal, two model structures (Section 6.1),
and two ways to perform the numerical integration. See [Bjö03b] for details of
the implementation.

area2, moment2. The area and moment methods using the first order model (Sec-
tions 6.1-6.2) without prewhitening the input signal and certain ways to perform
the numerical integration. See [Bjö03b] for implementation details.

As part of the work underlying this thesis is a Matlab function estdeadtime which
implements some of the the time-delay estimation methods above.

7.3 Open Loop Simulation Setup

In the open loop simulations the output signal y(t) was simulated as

y(t) = G(s)u(t) + v(t) (7.1)

where u(t) and v(t) are the input and noise signals respectively. G(s) is a linear
system with time-delay.

The factors (or conditions) of the simulations can be divided into fixed factors
and varied factors . The different possible choices for the same factor are in this
thesis called levels of the factor. The choice of level for all factors is called a factor
level combination. A trial consists of a collection of simulations, one simulation for
each possible combination of factor levels. In factorial experiments (Section 7.1), a
trial is called a replicate.

Fixed factors for the open loop simulations were: The noise v(t) was white
and Gaussian. The system G(s) was simulated by the function lsim in [CST] in
continuous-time. The sampling interval for the time-delay estimation was Ts = 1.
The varied factors for the open loop simulations are given below:

Method. The time-delay estimation methods. See Section 7.2.

Prewhite. For many of the methods in Section 7.2 the input and output signals u(t)
and y(t) were either

pw. Filtered through a filter that made the input white. See Algorithm 10.

nopw. Not filtered through a prewhitening filter.

Sys. The following systems were simulated (see Figure 7.1 for impulse responses):

slow2. A slow second order system (same asG2 in Equation 4.28 in Section 4.2.6):

G1(s) = e−9s 1

(10s+ 1)(s+ 1)
(7.2)
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Algorithm 10 Prewhitening the input signal.

1. Remove the mean value of the input u(t) and output y(t) signals.

2. Estimate a 10th order AR model for u(t).

3. Filter u(t) and y(t) through the AR model.

fast2. A fast second order system:

G2(s) = e−9s 1

(s+ 1)(0.1s+ 1)
(7.3)

real4. A fourth order system with real poles (real4 ). The poles and zeros lie
between the poles of system G1:

G5(s) = e−9s 0.05(s+ 0.9)(s+ 0.4)

(s+ 1)(s+ 0.6)(s+ 0.3)(s+ 0.1)
(7.4)

cplx4. A fourth order system with complex poles. The poles have the same
distance to the origin as in system G1:

G6(s) = e−9s 1/36(s+ 0.9)(s+ 0.4)

(s− 0.1 · 2−1/2(−1± i))(s− 2−1/2(−1± i)) (7.5)

As can be seen in Figures 7.1 this system is very slow and the oscillations
are weak.

G7. A slow first order system:

G7(s) = e−9s 1

(10s+ 1)
(7.6)

G8. A fast first order system:

G8(s) = e−9s 1

(s+ 1)
(7.7)

G9. A pure time-delay system:

G9(s) = e−9s (7.8)

Note that for all the systems above, the time-delay will be 10 after zero-
order-hold sampling because a time-delay of one sample is created by the
sampling.
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Figure 7.1 Impulse response of system G1-G2 and G5-G8 (Equations 7.2-7.7).
(t130g1)
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InType. The input signal was 500 samples long and could be of three different types:

RBS 10-30%. (Random Binary Signal) with frequency contents between 10%-
30% of the Nyquist frequency. It was generated by the function idinput

in [SIT]. The same realization of the signal was used in all trials of the same
Monte Carlo simulation. See Figure 7.2 for an example of this input signal
type.

RBS 0-100%. RBS with frequency contents between 0%-100% of the Nyquist
frequency, i.e white noise. It was generated by the function idinput in [SIT].
The same realization of the signal was used in all trials of the same Monte
Carlo simulation. See Figure 7.3 for an example of this input signal type.

Steps. Three steps of the form (in Matlab code): [zeros(50,1);ones(150,1);
-ones(150,1); zeros(150,1)]. See Figure 7.4 for an example of this input
signal type.
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Figure 7.2 Time signal (left) and frequency spectrum (right) for a realization of
the input signal type RBS 10-30%. (t160a1time, freq)
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Figure 7.3 Time signal (left) and frequency spectrum (right) for a realization of
the input signal type RBS 0-100%. (t160a2time, freq)
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SNR. The signal-to-noise ratio (SNR) could be chosen. The SNR was defined as
the ratio of the output signal power (without noise) to the output noise power.
The used SNR has been either 1 or 100.

Many of the factors and levels of the open loop simulations were chosen to be the
same as in [Hor00], which makes comparisons easy. The names of the factors and
factor levels in this section are also used in the following plots in this thesis.

7.3.1 A standard benchmark

In many simulations in this thesis a standard setup (the standard benchmark) was
used. It consists of calculating the average RMS error, bias or standard devia-
tion of the estimates for the systems G1-G2, G5-G6 (not including G7-G9), for



7.4 Closed Loop Simulation Setup 73

Figure 7.4 Time signal (left) and frequency spectrum (right) for a realization of
the input signal type Steps. (t160a3time, freq)
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the input signals RBS 10-30%, RBS 0-100% and Steps and for the SNRs 100 and
1. This simulation setup was the same as in [Bjö03e]. It is also the same as
in [Bjö02, Bjö03b, Bjö03f, Bjö03c, Bjö03d] but with a different definition of the
SNR (See [Bjö03e]).

Note that the results with this simulation setup are valid for the simulated setup
and the used methods. For example, since there are three slow systems and one
fast system, the result will be more adapted to slow systems if taking the average
over the systems.

7.4 Closed Loop Simulation Setup

In automatic control of systems and processes, usually feedback is used, resulting
in closed loop systems. Therefore it is interesting to evaluate time-delay estimation
methods in closed loop. This section describes the used setup for closed-loop simu-
lations. The control system of the closed loop simulations is depicted in Figure 7.5.

Fixed factors for the closed loop simulations were: The noise source w(t) was
white and Gaussian. The continuous-time system G(s) was converted to discrete-
time with zero-order-hold sampling before the simulations. The simulations were
performed in discrete time. The sampling interval was 1.

Most of the factors in Section 7.3 could also be varied in the closed loop case
but sometimes the levels were different. Only one input signal type was used so the
factor InType was not varied. Extra factors were Ctrl, NoiseMod and InputPlace.
Many of the factors and levels of the closed loop simulations were chosen to be the
same as in [IHD00, IHD01a, IHD01b], which makes comparisons easy.

Sys. The following systems were simulated. Again, the time-delay will be 10 after
the sampling.
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Figure 7.5 The control system in closed loop simulations. F (s) is the controller,
G(s) the system with the time-delay and H(s) is the noise model.
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slow. A slow second order system:

G1b(s) = 0.5e−9s 1

(10s+ 1)(s+ 1)
(7.9)

This is the same as system G1(s) in Section 7.3 except for the static gain
being half of G1(s)’s gain.

fast. A fast second order system:

G2b(s) = 0.5e−9s 1

(s+ 1)(0.1s+ 1)
(7.10)

This is the same as system G2(s) in Section 7.3 except for the static gain
being half of G2(s)’s gain.

Ctrl. The possible controllers were all PI-controllers but giving different band-
widths. Ts is the sampling interval.

slow. A slow PI controller:

F1(q) = 0.6
1 + Ts/50− q−1

1− q−1
(7.11)

medium. A medium fast PI controller:

F2(q) = 0.25
1 + Ts/5− q−1

1− q−1
(7.12)

fast. A fast PI controller:

F3(q) = 0.9
1 + Ts/12− q−1

1− q−1
(7.13)
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NoiseMod. The noise model H(q) could be chosen in three different ways:

filt. White noise filtered by

H1(q) =
0.71

1− 0.7q−1
(7.14)

oe. Unfiltered white noise giving an output error model structure y(t) = G(q)u(t)+
w(t):

H2(q) = 1 (7.15)

arx. A noise model H3(q) with the same denominator as systemG1b. This would
give an ARX model structure y(t) = (B(q)/A(q))u(t) + (1/A(q))w(t) with
G1b except for a different normalization in the numerator of H3(q):

H3(q) =
0.92

1− 0.368q−1 + 1.671 · 10−5q−2
(7.16)

InType. In the closed loop simulations, only one reference signal r(t) was used. It
is here called Steps2 and consisted of two steps and 2000 samples and was gen-
erated in Matlab by: [4*ones(1,1000), 2*ones(1,1000)].’. This signal is
not exactly the same as in [IHD01b] but of a similar character.

InputPlace. The input to the time-delay estimation could be either

u. The input signal u(t) to the system and the output signal y(t) or

r. The reference signal r(t) and the output signal y(t).

SNR. In the simulations the power of the noise w(t) was specified to 0.10, which
is the same as the high noise power used in [IHD00, IHD01b]. This means that
the SNR according to our definition in Section 7.3 will be different for different
systems and controllers. In a simulation the SNR was estimated. The maximum
SNR was 1147, the minimum 790, the mean 959 and the standard deviation 66.
In summary, this is a very high SNR.

7.5 Analysis Methods

In this work we have used the following analysis methods. However, the result
of not all analysis methods are shown in this thesis. There are also some special
analysis methods that are specific to certain estimation methods. See the respective
section about these.

1. Plots of the estimates. These give the possibility to discover outliers and see
the behavior for different factor level combinations.
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2. Bar plots of the RMS (root mean square) error of the estimates for different
factor level combinations. These give an estimation quality measure which
can be used to see how good the estimates are. They also indicate which
factor level combinations, e.g. methods, are better or worse than others. See
Section 7.5.2.

3. Bar plots of the bias or standard deviation of the estimates for different factor
level combinations. See Section 7.5.2.

4. ANOVA (ANalysis Of VAriance) [Mon97, Mat01] on the RMS errors for dif-
ferent factor level combinations. ANOVA can tell us if there is a statistically
significant difference between factor level combinations, e.g. different meth-
ods or systems. See Section 7.5.3.

5. Plot of confidence intervals for pair-wise comparisons [Mon97, Mat01] for
the RMS errors for different factor level combinations. This can give us the
possibility to say that certain factor level combinations, e.g. some methods,
are better than others. See Section 7.5.3.

RMS error, bias and standard deviation are expressed in number of sampling
intervals in this thesis. A part of the work underlying this thesis is the devel-
opment of a MATLAB toolbox for managing and analyzing data from factorial
experiments [Bjö]. It uses some functions from the Matlab Statistics Tool-
box [Mat01].

7.5.1 Managing failing estimates

Many methods sometimes fail and return estimates with unreasonable values (neg-
ative, large positive, complex or NaN). To handle this, the following procedures
were used:

1. In this procedure, complex and NaN values and values ≤ 0 or ≥ 20 are
replaced with the value 20. This will give a large error for these estimates as
the true time-delay is 10. The maximum RMS error will also be 10. Then,
the 90%, 95% or 100% best estimates are retained. Estimates of the factor
level combinations with the worst estimates will be removed first. If some
factor level combination contain only failed estimates (RMS error =10) then
the results in the plots will be the same for 90%, 95% and 100% as long as
not all estimates are removed from any factor level combination. This is the
case for the methods idimp5, idstep5 and idstepCusum4 in Figure 9.1. On
the contrary, if the failed estimates are spread uniformly between factor level
combinations, the difference between 90%, 95% and 100% will be large, as
with idproc7 in Figure 9.1.

2. In this procedure, estimates outside the region [0,20] are set to the value 20.
This choice is a trade-off between how much to punish failed estimates and
how much to punish poor RMS error values when the estimates occurred.
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It is up to the user to decide what is important. The closer this number
(T̂d = 20) is to the correct time-delay (true Td = 10) the less punishment of
the method for failed estimates. The more distant from correct time-delay
the more punishment for failed estimates. This can mean that depending
on the chosen punishment for failures different methods will be “best”. The
time-delay T̂d = 20 is assumed to be a maximum time-delay to detect.

3. In this procedure the optimization is restricted to the region [0, 30].

The motivation for removing the worst estimates is that a good implementation of
the estimation method can detect time-delay estimates outside an expected range
([0,20] in procedure 1 above) and should be able to handle this, e.g. by restarting
an optimization with a different initial value.

7.5.2 Plots of RMS error, bias and standard deviation

The computational steps for bar graphs with RMS error, bias and standard devia-
tion of time-delay estimates are:

1. Optionally, remove the worst estimates. See Section 7.5.1

2. Compute the RMS error, bias or standard deviation of the time-delay esti-
mates for each factor level combination separately.

3. Compute the average (or max) of the result from step 2 over the levels of the
factors which are not to be shown in the plot.

4. Plot the graph.

Thus, all results in the bar graphs are on average (or max) over all the factors that
are not explicitly studied. Certain special cases can give a different result. Also
keep in mind that the presented RMS values only are estimates of the “true” ones.

Figure 7.6 shows an example plot. The axis label “InType*SNR” means that
on this axis there are different (factor level) combinations of input signal type and
SNR. On the other axis there are different methods. The tick mark labels tell us
what factor level combinations there are in the different “rows”and “columns”. The
levels of the factors are separated by an asterisk “*”. For example, on the axis to
the right “steps*1”means a combination of the input signal type Steps (Section 7.3)
and SNR=1. The level 10-30% is an abbreviation of RBS 10-30% and 0-100% of
RBS 0-100% . See Sections 7.3-7.4 for definitions of the factor and level names.

7.5.3 ANOVA and confidence intervals

A statistical method for analysis of experiments used in some scientific disciplines
is ANOVA (ANalysis Of VAriance) with subsequent computation of confidence
intervals for pair-wise comparisons, see for example [Mon97]. These analysis meth-
ods make it possible to give statements and conclusions with a certain level of
confidence or a specified risk of being false.
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Figure 7.6 Example of plot of RMS error of time-delay estimates as a function of
methods and environment factors. (t208b13)
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In ANOVA the following linear statistical model is used (here for just two
factors):

xijk = µ+ τi + βj + (τβ)ij + εijk, (7.17)

where xijk is the response variable (the observation), µ is the overall mean effect,
τi is the main effect of the ith level of the first factor, βj is the main effect of the
jth level of the second factor, (τβ)ij is the ijth interaction effect of the first and
second factors. All these effects are assumed to be constant and model (7.17) is
called the fixed effects model. The quantity εijk is a random error. Moreover, the
following is assumed:

∑
i τi = 0,

∑
j βj = 0,

∑
i(τβ)ij = 0 and

∑
j(τβ)ij = 0.

The errors εijk should be independent and Gaussian distributed with zero mean
and constant variance [Mon97]. Constant variance means that the variance of εijk
is the same for all ijk. In the ANOVA, hypothesis tests are performed to test all
τi = 0, all βj = 0 and all (τβ)ij = 0 against not all τi = 0, not all βj = 0 and not
all (τβ)ij = 0 , respectively.

In this thesis, we have utilized ANOVA and confidence intervals to discover sig-
nificant differences between method parameters (method factors) and environment
parameters (environment factors).

The trials were split into four groups. Each group was used to compute an
estimate of the RMS error of the time-delay estimate, giving four estimates x̃ijk ,
k = 1, . . . , 4, of the RMS error for each factor level combination ij. Here only
quantities for two factors (with indices i and j) are shown. In the simulations and
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analyses often more factors have been used. When forming the RMS error, a large
quantity of independent random numbers with the same probability distribution
are added. The well-known central limit theorem [Mon97] says that this sum will
be asymptotically Gaussian distributed. This makes it possible to use ANOVA and
confidence intervals for our problems if the number of trials is large enough.

Each RMS error estimate x̃ijk was then transformed by

xijk = x̃λijk

[Mon97, p. 84-90], giving us the the response variable xijk , k = 1, . . . , 4. The
four groups of trials have resulted in four replicates xijk , k = 1, . . . , 4. The reason
for the transformation was to (try to) fulfill one of the requirement of ANOVA,
namely the constant variance of εijk in Equation (7.17). This transformation is
useful in cases when the variance of the observation increases with the size of the
observation. It is also useful when the data has a non-Gaussian, skewed, probability
distribution, because in skewed distributions the variance often is a function of the
mean value. See [Mon97]. If the standard deviation σx̃ of a random variable x̃ is
proportional to a power of the mean value µ of x̃: σx̃ ∝ µα and we transform x̃ by
x = x̃λ, it can be shown that the standard deviation of the transformed variable is
σx ∝ µλ+α−1 [Mon97]. Thus, by letting λ = 1−α, the variance of the transformed
variable will become constant regardless of its mean value.

Figure 7.7 shows an example transformation. The transformation is x = x̃0.96.
The horizontal axis is the logarithm of the mean of the four RMS estimates and the
vertical axis is the logarithm of the standard deviation of the four RMS estimates
for all factor level combinations. The transformation is chosen by fitting a straight
line to the data points by the least squares method. Outliers whose values on
the vertical axis are very low are first removed. These outliers appear when the
estimation is so good that it always give the correct answer and therefore the
standard deviation is zero. They also appear when the estimates always are very
poor and are replaced with a fixed value, as with procedure 2 in Section 7.5.1.
Before the logarithm is computed, the value eps, which is the smallest number that
can be represented in the computer (≈ 10−16 in the used computer type, SUN
SunBlade 100), is added to avoid the logarithm of zero. This will, in our case, give
a value on the vertical axis of about −16 for outliers and can be seen in Figures A.1
and A.4.

After the transformation, the four replicates xijk of the response variable can be
applied to ANOVA, which can be used to discover significant differences between
levels of factors and level combinations of factor interactions. With the aid of
ANOVA, we can either say that there are statistically significant differences between
the levels or we can say nothing. If there are differences, we cannot say which level
is the “best”. We need the confidence intervals for that. The ANOVA results in
the traditional ANOVA table. See Table 7.2 for an example. The table tells us
that there are significant differences between the main effects of methods, between
the main effects of systems and between combinations of methods and systems
(the column “Prob>F” contains very small values). We say that these factors and
interactions have (statistical) effect. The values in this column (“Prob>F”), also
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Figure 7.7 Example of plot (without transform) for choosing a variance-stabilizing
transform [Mon97] for ANOVA. The transformation became (RMS error)0.96. The
transformation is chosen by fitting a straight line to the data points by the least
squares method. (t224b1)
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Table 7.2 Example of ANOVA table. Constrained (Type III) sums of
squares [Mat01]. (t224b1)

Source Sum Sq. d.f. Mean Sq. F Prob>F

Method 2769.8838 7 395.6977 9274.3874 0

Sys 84.5622 3 28.1874 660.6579 0

Method*Sys 115.7668 21 5.5127 129.2071 0

Error 4.0959 96 0.042666

Total 2974.3087 127

commonly called p-values, are the risks of saying that there is a difference when
there is actually no difference.

For the factors and interactions which have effect it is meaningful to compute
and plot confidence intervals for pair-wise comparisons of factor levels or level
combinations of interactions. Figure 7.8 shows an example. If the confidence
intervals (the horizontal lines in the circles) are not overlapping there is a significant
difference between the factor levels and we can see which level is the “best”. If the
transformation is positive (λ > 0), the intervals to the left in the figure are better
than those to the right. “Better” means that they correspond to a lower value
of the response variable, which is here the RMS error. If the transformation is
negative (λ < 0), it is the opposite, namely the best intervals are to the right. If
the intervals are overlapping we cannot say which level, if any, is the best. The
quantity on the horizontal axis is the response variable x which is the transformed
RMS error: x = x̃λ = (RMS error)λ. All confidence interval plots in this thesis
has a simultaneous confidence level of 95%. This means that the probability that
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all confidence intervals cover their respective parameter is 95% or with other words
the risk that we incorrectly say that there a difference between any of factor levels
or level combinations of interactions is 5%. Note that the horizontal lines in the
plots are not confidence intervals for (µτ)i, see below.

For the reader interested in statistical details we will describe the confidence
interval plot in Figure 7.8 in another way. We start by writing the ANOVA model
(7.17) in three other forms, namely

xijk = (µτ)i + βj + (τβ)ij + εijk with (µτ)i = µ+ τi (7.18)

xijk = τi + (µβ)j + (τβ)ij + εijk with (µβ)j = µ+ βj (7.19)

xijk = µij + εijk with µij = µ+ τi + βj + (τβ)ij , (7.20)

where (µτ)i is the main mean of the ith level of the first factor, (µβ)j is the main
mean of the jth level of the second factor, µij is here called the ijth interaction
mean of the first and second factors (actually, µij is the mean for the combination
of the ith level of the first factor and the jth level of the second factor in the
complete model (7.17) where the interaction are included). We want to compare
the “means” above to see which factor levels or factor level combinations that give
the best or worst result (highest or lowest RMS error of the time-delay estimate).
This can be done by computing confidence intervals for differences in the means.
For example, let us assume that the interactions are negligible. If the confidence
interval for (µτ)n− (µτ)m, where n and m correspond to different levels of the first
factor, does not include the value zero or negative values, then the level n gives a
significant higher value of the response variable (=RMS error if no transformation
is used) than the level m. Comparing all possible combinations of levels with
each other will often give very many comparisons. An economical way to perform
all these comparisons is utilized in the confidence interval plots in this thesis. The

circles in these plots (see Figure 7.8) mark the values of (̂µτ)i, i.e. estimates of (µτ)i.
The horizontal lines in the circles have half the length of the confidence intervals
for (µτ)n − (µτ)m. The confidence interval for (µτ)n − (µτ)m does not include the
value zero exactly when the horizontal lines from neighboring circles do not overlap.
The horizontal lines are not restricted to be within the circles but can sometimes
extent outside the circles as in Figure 8.10. The reason for the lines being so short
in this thesis is that very many trials are used in the simulations. As already said,
the horizontal lines in the plots are not confidence intervals for (µτ)i but 1/2 of
the confidence intervals for (µτ)n − (µτ)m (with the simultaneous confidence level
of 95%). The confidence intervals in this thesis use Tukey’s honestly significant
difference criterion [Mat01]. When choosing parameters of time-delay estimation
methods, we can ourselves select the factor levels (the parameter values) and we
will study confidence intervals for (µτ)n − (µτ)m if the interactions are significant.
When studying environment factors, which we cannot choose ourselves, we are often
only interested in how the time-delay estimation methods perform on average and
study confidence intervals only for main means even if there are interactions that
have a statistical effect. This is somewhat unusual.
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Figure 7.8 Example of a confidence interval plot (95% simultaneous confidence
level). Tukey’s honestly significant difference criterion [Mat01] is used. The quan-
tity on the horizontal axis is the transformed RMS error: (RMS error)λ. (t224b1)
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To examine if the requirements of ANOVA are fulfilled it is customary to study
some plots of the residuals

εijk = xijk − x̂ijk , (7.21)

where x̂ijk is an estimate of the observation xijk . The quantity x̂ijk is also called
the fitted value. Figures 7.9-7.10 show examples of such plots. The residuals should
be Gaussian distributed (which implies that also the response variable for a fixed
factor level combination is Gaussian). This can be checked by the two top graphs
in Figure 7.9. The data points in the top left graph should follow the dash dotted
straight line. “In visualizing the the straight line, place more emphasis on the
central values than on the extremes.” [Mon97] The top right plot should resemble
the well-known Gaussian bell. In Figure 7.9 these graphs look good. Figure A.2 is
an example when these graphs do not look good.

The residuals vs. time and vs. fitted values should be within horizontal bands
and be ”structureless” (show no obvious patterns) [Mon97], which can be checked
by the two bottom graphs in Figure 7.9. In Figure 7.9 these graphs look fine. In
Figure A.2 these graphs have a clear structure which is not good. If the residu-
als increase with increasing fitted value, this is a sign of that the variance is not
constant ([Mon97]).

In Figure 7.10 the requirement that the variance of εijk is constant can be
checked. In this figure the standard deviation of the residuals εijk are displayed for
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Figure 7.9 Example of residual analysis for ANOVA and confidence intervals.
(t224b1)
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different levels of all factors. If the model is exact then εijk = εijk . The standard
deviation should be equal for all levels. In Figure 7.10 the difference in standard
deviation is a factor two. In Figure A.3 all factors have approximately constant
variance except for the threshold (bottom left graph). The middle value of the
threshold has a much higher variance than the other values.

If the condition of Gaussian residuals is not met, then the length of the con-
fidence intervals will not be correct and the confidence level of the ANOVA hy-
pothesis tests will not be the advertised. Moreover, if the variance is different for
different factors levels or factor level combinations, the confidence intervals should
have different lengths. In this thesis the average variance is used in the confi-
dence interval plots and therefore all intervals is of an average length. If any of
these two conditions, Gaussian residuals and constant variance, are violated the
interpretation of the results must be done with caution.

The residuals from TDE methods are not always Gaussian distributed. Espe-
cially the time-delay estimation methods that deliver discrete values (multiples of
the sampling interval) are difficult to get a Gaussian response variable from. Both
the facts that they deliver discrete values and that the delivered values often are
the same (often either completely correct or completely incorrect) require the sum
of very many squared errors to get something that resembles a Gaussian distri-
bution. The time-delay estimates (and therefore also the squared errors) are very
non-Gaussian. If many trials are needed, the advantage of ANOVA and confidence
intervals is smaller.
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Figure 7.10 Example plots of residual standard deviation versus factor levels.
(t224b1)
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However, since the results in the ANOVA tables and the confidence interval
plots often are very clear (the confidence intervals are well separated), we have
some security margin for non-constant variance and non-Gaussian distribution to
avoid drawing false conclusions. See for example Figures 8.1, A.2 and A.3, where
the validation graphs (Figures A.2 and A.3) do not look good but there are two
clearly separated groups of confidence intervals in Figure 8.1. We say that the
confidence intervals in different groups are significantly different but we do not say
that confidence intervals within the same group are significantly different even if
the intervals do not overlap.

Another remedy is that the ANOVA method for the balanced (equal number of
replicates for all factor level combinations) fixed (constant) effects model (7.17), is
rather robust against violations of the Gaussianity condition [Mon97, p. 82] and the
constant variance condition [Mon97, p. 85]. We also hope for this robustness when
the prerequisites for ANOVA are not fully fulfilled. We also trust the random
number generator of Matlab to give us independent experiments and response
variables.

It is also important to keep in mind, that even if the ANOVA and confidence
intervals tell us that there is a significant difference between some levels or level
combinations, it is not necessary that these differences are important in practice.
For example, assume that we can show that two car models have statistically dif-
ferent fuel consumptions. But if the difference is only 0.00001 liter per kilometer,
it probably has no practical importance.

This section has explained ANOVA and confidence intervals for pair-wise com-
parisons: what they do and what requirements must be fulfilled to use them. We
will use these analysis methods in the subsequent chapters.



8
Parameters and Properties of

Time-Delay Estimation Methods

In this Chapter, parameters in time-delay estimation (TDE) methods are chosen
by analysis of Monte Carlo simulations to optimize their estimation quality. Also,
some properties of different classes of TDE methods are observed. The sections in
this chapter follow the classification given in Chapter 3.

8.1 Time Domain Approximation Methods

In this section we will choose parameters and study properties of the time do-
main approximation methods idimp4, idstep4, idimpCusum3 and idstepCusum3 (Sec-
tion 7.2). These methods can also be called thresholding methods.

8.1.1 Choosing parameters in thresholding methods

Here we will show how we can choose the the relative threshold hstd and with/with-
out prewhitening in the method idimp4 in Section 7.2. Some simple experiments
showed that it is difficult to manually select method parameters that are suitable
for all cases (all level combinations of the environment factors input signal type and
SNR). Therefore, the parameters are chosen with the help of confidence intervals.
Often the methods miss to detect and fail to deliver an estimate [Bjö03b]). In such
cases procedure 2 in Section 7.5.1 is employed.

In the ANOVA table, Table A.1, the p-value (Section 7.5.3) for prewhitening
is 0.053, which is a rather low risk for saying that there is a difference when there
is no. However, since the prerequisites of the ANOVA (Figures A.2A.3) seem not
to be fulfilled we cannot say that there is any difference between with and without

85
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Figure 8.1 Confidence intervals (95% simultaneous confidence level) for combina-
tions of method parameters for thresholding of impulse response idimp4. Positive
transformation: (RMS error)0.91=> ”The lower the better”. (t228b4)
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prewhitening. On the other hand, we see in Table A.1 that there is a significant
difference for different thresholds because the p-value for this factor is very low.
Figure 8.1 depicts confidence intervals for different parameter combinations. We
see from Figure 8.1 that there are two choices (to the left in the figure) of method
parameters which are significantly better on average than the other but with no
significant difference between them. One of these is hstd = 5 with prewhitening
(number 6 in the graph). This choice was called idimp5 in Section 7.2. As said,
the prerequisites seem not to be fulfilled but since the results are very clear (well
separated intervals) in Figure 8.1 we trust this conclusion.

The parameters of the time domain estimation methods idstep4, idimpCusum3
and idstepCusum3 (Section 7.2) are chosen in the same way in [Bjö03b], giving the
methods idstep5, idimpCusum4 and idstepCusum4 (Section 7.2).

8.1.2 Properties of thresholding methods

The standard benchmark simulation setup in Section 7.3.1 was employed in this
section. When a method missed to detect, a uniform distributed random number
in the range 20 to 30 was delivered as the time-delay estimate. The reason for using
random numbers was to come closer to the required prerequisites for the confidence
interval calculations (Section 7.5.3). Since the estimates are very non-Gaussian,
as many as 4096 trials were simulated. The transformation was (RMS error)0.89
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Figure 8.2 Confidence intervals for pair-wise comparisons (95% simultaneous
confidence level) for different thresholding methods. Positive transformation:
(RMS error)0.89=> ”The lower the better”. (t229b5.m)
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(Section 7.5.3). This means“The lower the better”. We see in the validation graphs
(Figures A.5-A.6) that the prerequisites are not completely fulfilled so we must be
somewhat careful in the interpretation of the ANOVA and the confidence intervals.

Figure 8.2 shows confidence intervals for pair-wise comparisons of the methods
idimp5, idstep5, idimpCusum4 and idstepCusum4. We see that:

• Step response is significantly better (not overlapping confidence intervals)
than impulse response on average.

• CUSUM thresholding is significantly better than direct thresholding on av-
erage.

In [Bjö03d] it is shown that the thresholding methods idimp5, idstep5, idimp-
Cusum4 and idstepCusum4 give better estimates for RBS signals than step signals
and for fast systems than slow systems.

It is also shown in [Bjö03d] that the methods overestimate the time-delay.
Nearly the whole RMS error is caused by the positive bias. The reason is that the
detection miss due to a too high threshold. With the relative threshold hstd = 5,
the absolute threshold will be very high. If the estimated impulse response co-
efficients are Gaussian distributed N(y(t), ystd(t)), then ŷ(t) ± 5ystd(t) covers the
true impulse response coefficient y(t) by a probability of 100.0%. This is the same
as wanting to be very certain not to say that the impulse response has started
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when it has not. This also means that the start of many true impulse responses
will be missed. The true confidence level will often, however, be different from this
(100.0%) because the confidence intervals will be uncertain since 1) often the model
and the true systems are of different structures 2) the standard deviation must be
estimated and 3) the true probability distribution is not always Gaussian.

The used thresholds have nevertheless been selected to give the best result on
average (Section 8.1.1). Different relative thresholds are needed in different combi-
nations of environment factors. In Figure 9.2 it can be seen that these thresholding
methods give very accurate estimates for some combinations of input signal type
and SNR but very poor for other. A better estimation of the change time than
simple thresholding is needed. The references [CHWW99, Isa97, KG81] contain
suggestions for improvements.

Probably it would be better to estimate the start of the impulse response by
going backwards from the detection time than using the detection time. See [Gus00]
for how this can be done for CUSUM thresholding. Compare with Section 4.1.3
and Figure 4.2.

8.2 Frequency Domain Approximation Methods

In this section we will choose parameters and study properties of frequency domain
approximation methods (Section 4.2). These methods can also be called phase
methods.

8.2.1 DAP in open loop

Figure 8.3 depicts the RMS error of the DAP methods (Section 4.2.5) lagudap,
oedap, arxdap and firdap (Section 7.2) with and without prewhitening (Section 7.3)
in the standard benchmark (Section 7.3.1) using 1024 trials. For each level combi-
nation of the other factors, the system with the worst, i.e. highest, RMS error was
plotted. In this way the worst case performance is optimized. Which systems that
were chosen is not shown in the figure.

As can be seen in Figure 8.3, some of the DAP methods exhibit very large RMS
errors in some cases. The methods totally fail for these factor level combinations.
We notice that some estimates are very large in these cases, up to about 30000 (not
shown here). Compare with Section 4.2.7.

In Figure 8.3, lagudap without prewhitening seems to be the best method for
the input signal type Steps at high SNR. It is also among the best methods for low
SNR. The method oedap fails in all cases. As a summary of Figure 8.3 we can say
that the DAP methods seem to be non-robust and they can totally fail in some
cases.

In order to mitigate the failures of the DAP methods, the use of zero guard-
ing according to Section 4.2.7 on the Laguerre model structure was investigated
in [Bjö02]. Two different types of zero guarding (ZType) were investigated: Re-
move zeros outside the unit circle close to the point +1 or remove zeros outside
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Figure 8.3 RMS error of DAP methods (Sections 4.2.5 and 7.2) in the standard
benchmark (Section 7.3.1). 1024 trials. No zero guarding. For each combination of
the other factors, the worst system (with the largest RMS error) is plotted. Axis
labels and tick mark labels are explained in Section 7.5.2. (t230b1)
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but close to the unit circle (ucirc). Different distances (ZSize) from +1 or the unit
circle to be considered as “close” were tried: 0.05, 0.10, 0.15, 0.20, 0.25, 0.25 and
0.30. If there were several zeros within the zero guarding distance, different max-
imum number (ZNo) of zeros to remove were tested: 1 to 4. The closest zeros
were removed first. A simulation with 1024 trials was conducted. The three input
signals types and the four systems in the standard benchmark (Section 7.3.1) were
used. No prewhitening was employed. The SNR was low [Bjö02] because we want
the estimation method with zero guarding to manage low SNRs. ANOVA and
confidence intervals (Section 7.5.3) were utilized to discover significant differences
between the different combinations of the levels of ZType, ZSize and ZNo. The
result in [Bjö02] showed that there are several “good”combinations of ZType, ZSize
and ZNo with no significant differences. It is, however, clear that removing zeros
close to +1 is better than removing zeros close to the unit circle (ucirc). It is also
clear that allowing for removing more than one zero is necessary. We choose one of
the good combinations in [Bjö02]: ZType=+1, ZSize=0.15 and ZNo=3 for the next
simulation we will present.
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Figure 8.4 RMS error of DAP methods. 1024 trials. The zero guarding
ZType=+1, ZNo=3 and ZSize=0.15. For each combination of the other factors,
the worst system (with the largest RMS error) is plotted. Axis labels and tick
mark labels are explained in Section 7.5.2. Compare with Figure 8.3. (t232b1)
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Figure 8.4 shows the result for RMS error when zero guarding above was used,
cf. Figure 8.3. We immediately observe that now no DAP methods fail but give
reasonable and low RMS errors. Even oedap works and gives good estimates. Still
lagudap gives the best result for Steps at high SNR. At low SNR it is among the
best. The “optimum” choice of ZType, ZNo and ZSize for lagudap appears to work
also for the other DAP methods. In closed loop simulations [Bjö02] the same zero
guarding as for open loop appeared to work.

8.2.2 More properties of DAP methods

In this section another simulation is used. The four methods lagudap2, firdap2,
arxdap2 and oedap2 (Section 7.2) were put into service for low SNR (=1) in the
standard benchmark (Section 7.3.1). The worst estimates were removed by pro-
cedure 1 in Section 7.5.1. The transformation (Section 7.5.3 ) became positive:
(RMS error)0.64. This means the lower value in the confidence interval plot the
better. ANOVA table and validation graphs can be found in Appendix A.2. We
see in Figure 8.14 that
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Figure 8.5 Confidence intervals for pair-wise comparisons (95% simultaneous
confidence level) of input signal types (left) and systems (right) for the average
over lagudap2, firdap2, arxdap2 and oedap3 (Section 7.2). Positive transformation:
(RMS error)0.64=> ”The lower the better”. (t208b16)
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• On average these methods work better for fast than slow systems.

• On average these methods work better for random binary input signals than
step input signals.

8.2.3 Discussion

Of the tested model structures, FIR, ARX and Laguerre models can be quickly
estimated by linear regression. The OE model structure, on the other hand, requires
a numerical search which makes the estimation slower.

The location α of the pole of the Laguerre model (Section 4.2.3) probably affects
the locations of the zeros and therefore also how sensitive they are for falling on
the wrong side of the unit circle, i.e. here outside it (Section 4.2.6), due to noise.

As seen in this thesis, the DAP method fails if a zero erroneously falls outside
the unit circle. The error in the time-delay estimation is not proportional to the
error in the position of the zero. A small error in the position which does not cause
the zero to fall on the wrong side of the unit circle will result in a small estimation
error. But when the zero just falls on the incorrect side of the unit circle the
estimation error will be large. The estimation error is larger close to the point +1
and smaller further away. This makes the DAP method sensitive to where the true
zero is located.

An advantage of the DAP method compared to many other methods is that
it can estimate subsample time-delays, i.e. time-delays that are a fraction of a
sampling interval.

The zero guarding chosen in Section 8.2.1 for Laguerre in open loop seems to
work also for closed loop. It also appears to function for the other model structures
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in both open loop and closed loop. Thus, the choice of zero guarding appears to
be robust.

In Section 8.2.1 we saw that sometimes it is not enough to remove only one
zero. The reason is likely that because complex zeros come in complex conjugated
pairs, both zeros in the pair must be removed.

The location of the true non-minimum phase zeros probably depends on the
time-delay and the sampling interval. The longer time-delay or the shorter sampling
interval, the closer to the point +1 will the true zeros be. Therefore ZSize depends
on the maximum possible time-delay and on the sampling interval.

A reason why Laguerre DAP works well for step input signals could be as follows.
It is well known that an estimated model will become better in frequency ranges
where the input signal has much energy [Lju99]. Since a step-like input signal has
its most energy at the frequencies which are used by the time-delay estimation, i.e
at low frequencies, it will result in a good time-delay estimate.

In the open-loop simulations the fast second order system gave the lowest RMS
error on average. This is natural because this system exhibits a clearer start of the
rise in the step response. The fourth order system with complex poles gave the
highest RMS error on average. It seems that a more complex system makes the
time-delay estimation more difficult.

For step signals in open and closed loop, we in this thesis agree with [Hor00,
IHD01b] that Laguerre DAP is a suitable estimation method. [Hor00, IHD01b]
have, however, only tested with step signals and not reported that the DAP method
sometimes fails.

8.2.4 Conclusions

We draw the following conclusions from our work on DAP methods:

• The DAP method is not restricted to the Laguerre model structure but can
be used with any linear model structure, e.g. OE, ARX or FIR.

• DAP methods are inherently non-robust and can totally fail in some cases.

• The probability of failure of a DAP method depends on the model structure
of the estimated model, the input signal type and the SNR.

• In failing cases, DAP methods can be made more robust by zero guarding. A
means to choose the zero guarding for a certain application is using confidence
intervals on estimates from simulated signals.

• An appropriate choice of zero guarding appears to be robust and work for
several model structures in both open loop and closed loop.

• For zero guarding of Laguerre DAP, removing zeros outside the unit circle
close to +1 works better than removing zeros at other places outside but
close to the unit circle. We must also allow more than one zero (a complex
conjugated pair) to be removed.



8.3 Laguerre Domain Approximation Methods 93

• Most often the DAP methods work better without prewhitening the data.

• OE DAP requires much more computation time than FIR, ARX or Laguerre
DAP. See also Section 9.4.

8.3 Laguerre Domain Approximation Methods

In this section we will choose parameters and study properties of Laguerre domain
approximation methods (Section 4.3).

8.3.1 The standard benchmark

We use the standard simulation setup in Section 7.3.1. Before the analysis methods
are employed, outliers and failed estimates have been removed by procedure 1 in
Section 7.5.1 .

Figure 8.6 displays the RMS error for combinations of method and input signal
type. By comparing Figure 8.6 with other RMS error plots in this thesis, e.g.
Figure 9.1, the following conclusions are drawn:

• Step input signals are possible to use but RBS signals are not.

• For step input signals, the method fischer8 seems to be the best.

8.3.2 Several Laguerre domain approximation methods with
step input

We now restrict ourselves to step signals and compare the different Laguerre do-
main approximation methods with the aid of confidence intervals for pair-wise
comparisons.

We use the estimates for the low SNR (SNR=1). The number of trials was 1152.
Outliers and failed estimates have been removed by procedure 1 in Section 7.5.1.
The ANOVA table [Bjö03e] shows that there are significant differences between
combinations of methods and systems. The confidence interval plot in Figure 8.7
shows that fischer8 indeed is significantly better than the other methods for step
input. The validation graphs for the use of ANOVA and the confidence interval
plot in Appendix A.3.1 look very fine.

When using high SNR (SNR=100), the prerequisites for the ANOVA and the
confidence interval plot were not fulfilled (determined by the same type of graphs
as in Appendix A.3.1). Since the case with low SNR is a more difficult case than
with high SNR, we consider it to be more informative. It must be more difficult for
a method to be best for low SNR. It should then not be bad for high SNR either.
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Figure 8.6 Average RMS error (in number of sampling intervals) for different
Laguerre domain approximation methods and input signal types for the standard
benchmark. Axis labels and tick mark labels are explained in Section 7.5.2. (t224b1)
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8.3.3 The method fischer8 with step input signals

We now concentrate on fischer8 and step input signals in this section. Since the
methods which we study in this thesis were derived for systems being a pure time-
delay, an interesting question is: Is the method (fischer8) only suitable for pure
time-delay systems or can it be used also for systems with dynamics? We will
investigate this. We will only show results for low SNR. Results for high SNR
are similar and can be found in [Bjö03e]. Outliers are removed by procedure 1 in
Section 7.5.1. The number of trials was 4096.

The ANOVA table in [Bjö03e] says that there are differences between the sys-
tems. Figure 8.8 shows confidence intervals for pairwise comparisons of systems.
We cannot say that there are any differences between the systems G1, G5 and G6

but we can say that these three systems give significantly better estimation results
than the other ones. The system G2, which is faster, is not that good. The system
G9, i.e. the pure time-delay has the worst estimation performance. It is significantly
worse than the other systems. This is strange because the used Laguerre domain
methods were derived for pure-time-delay systems like G9(Section 4.3). The vali-
dation graphs for the ANOVA and the confidence interval plot in Appendix A.3.2
are acceptable .
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Figure 8.7 Confidence intervals (95% simultaneous confidence level) comparing
Laguerre domain approximation methods with step input at SNR = 1. Positive
transformation (RMS error)0.96=> “The lower the better”. Tukey’s honestly sig-
nificant difference criterion [Mat01] is used. (t224b1)
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8.3.4 Execution time

The execution time of the method fischer8 is long. Table 8.1 shows the execution
time for the methods fischer8 and arxstruc3 (Section 7.2) in a simple test in Matlab.
The execution speed of fischer8 can probably be optimized. The most execution
time is required for the calculation of the regression matrix Φ (Equations (4.39)
and (4.42)). In our test the calculation of Φ took 82% of the total execution time
(≈the first column in Table 8.1). The execution time for Φ increases rapidly with
increasing number N + 1 of used Laguerre function. Fortunately, Φ depends only
on the input signal and not on the output signal (see Equation (4.39)). This means
that if we repeatedly use the same input signal, Φ needs to be computed only
once. In the second column in Table 8.1 the already computed Φ is used. Some
of the differences in execution time between the first and the second column in
Table 8.1 is because Matlab does not load a function into memory before it is
needed. Assumably, the whole difference for arxstruc3 between the first and later
calls is due to this loading of functions into memory. The loading has a very small
effect on the execution time for fischer8. Comparison of the execution time of more
methods are done in Section 9.4.
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Figure 8.8 Confidence intervals (95% simultaneous confidence level) for different
systems for fischer8 with input signal Steps at SNR = 1. Positive Transformation
(RMS error)4.48=> “The lower the better”. Tukey’s honestly significant difference
criterion [Mat01] is used. (t225b1.m)
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Table 8.1 Execution time for fischer8 and arxstruc3 implemented in Matlab in
seconds on a SUN SunBlade 100 computer. The column “Later calls” shows the
mean execution time in calls 2 to 5. (t227b1)

Method First call Later calls

fischer8 63.994 2.882
arxstruc3 0.202 0.118

8.3.5 Discussion

Even if we only have studied the method fischer8 in Section 8.3.3, it is reasonable
to believe that the same results should apply also for the other Laguerre domain
methods (Section 7.2), i.e. a pure time-delay system is not the easiest system to
estimate the time-delay for.

The Laguerre domain approximation methods are different from the method
Laguerre DAP in Section 4.2.5 and in [IHD01b, Hor00]. In Laguerre DAP the impulse
response of the system is modeled by Laguerre functions. In Laguerre domain
approximation methods the input and output signals are modeled by Laguerre
functions. Whether the modeling of a signal with Laguerre functions is successful
depends on how similar the signal and the Laguerre functions are. Theoretically
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as N → ∞ all finite length signals can be modeled exactly by Laguerre functions
(independent of choice of the pole). But this is less interesting since we cannot
use infinite sums in the reality. In order to represent a discrete-time signal with
a finite length M in the frequency domain it is enough with M DFT (Discrete
Fourier Transform) coefficients [GLM01]. For the discrete-time Laguerre domain
this is probably not enough. A discrete-time signal with a finite length M is seen
as signal of infinite length where only M signal values are different from zero.
(See extended spaces in [Fis99, FM99c].) This means that we probably need many
more Laguerre coefficients than M to exactly represent the signal. If, however, the
truncated Laguerre functions are linearly independent, it should be enough with M
Laguerre coefficients. Then Equation (4.34) will be a nonsingular quadratic linear
equation system.

Modeling of impulse responses with Laguerre functions [Bjö02, IHD01b, Hor00]
probably is more suitable than modeling input and output signals because typical
impulse responses are more “Laguerre-like” than typical input and output signals.
Compare Figure 4.11 with Figures 7.1 and 7.2-7.4.

Laguerre modeling of input and output signals can work well when the signals
have a short extent in time and do not oscillate too much (e.g. are low-pass). See
Figure 4.12. The pole α must be suitably chosen [Fis99, FM99c, FM99b, Bjö03e]
(see also [Bjö03e]) and the number N of Laguerre functions must be large enough
(Figure 4.12). Of our signals the signal with steps work fine but the other signals
not so well.

Laguerre functions are chosen in [Fis99, FM99a, FM99b, FM99c] as the basis
functions probably because the signals in the intended applications are easy to
represent in the Laguerre domain. Other basis functions could also be possible,
e.g. Kautz functions.

Laguerre coefficients with low subscripts are suitable for low-pass signals. For
other signals perhaps other ranges of subscripts should be used.

8.3.6 Conclusions

We draw the following conclusions from the work about Laguerre domain methods
in this thesis and in [Bjö03e].

• The input signal:

– The input signal has a large influence on the time-delay estimation qual-
ity (Figure 8.6.

– The Laguerre domain methods are suitable for input signals that can
be well approximated by truncated series of Laguerre functions. The
signals should be low-pass and not too long in time.

– One or several steps (Figure 4.12) or a triangle windowed low-frequency
sinusoid [Bjö03e] are examples of suitable signals. Random binary sig-
nals (Figure 4.12) are not suitable.
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• The system:

– The system has a smaller influence on the time-delay estimation quality
than the input signal.

– Systems with a not too fast dynamics give better time-delay estimation
quality than pure time-delay systems despite the fact that the estimation
methods were derived for pure time-delay systems (Figure 8.8).

• The estimation methods:

– The method fischer8 (Section 7.2) is the best of the tested methods
(Figure 8.7) because it gives the lowest RMS error on average.

– The number of used Laguerre functions should be as high as possible
(Figure 4.12). However, a high number gives a longer execution time.
The choice will therefore be a trade-off between estimation quality and
execution speed.

– The execution time of the methods is high, especially if many Laguerre
functions are used. The execution time can, however, be reduced for
subsequent estimations if the same input signal is employed. See sec-
tion 8.3.4 and Table 8.1.

– The methods do not seem to be robust. They sometimes fail and deliver
unreasonable estimates, e.g. negative or very large positive.

8.4 Continuous-Time One-Step Explicit Methods
(Idproc Methods)

In this section the continuous-time one-step explicit methods (Section 5.1.1) id-
proc1-idproc5 (Section 7.2) with and without prewhitening are compared and their
properties are studied in the standard benchmark (Section 7.3.1) using 128 trials.
The estimated time-delay was not allowed to be larger than 30 (procedure 3 in Sec-
tion 7.5.1). A negative transformation (RMS error)−0.011 was used (Figure A.15).
This means that ”the higher value the better” in the confidence interval plots (see
Section 7.5.3). The ANOVA table, Table A.6 in Appendix A.4 tells us that all main
factors and all factor interactions, for which we have plotted confidence intervals,
have a statistical effect. The analysis result is depicted in Figure 8.9-8.10. The
validation graphs in Appendix A.4 show that the prerequisites are not completely
fulfilled but for the conclusions we draw below the results are clear (well separated
confidence intervals). In Figure 8.9 it can be seen:

• It is best without prewhitening (nopw) of the input data (Figure 8.9).

• For nopw we cannot say that there is any difference between the model struc-
tures idproc1,2,3,5 on average but idproc4 is worst on average (Figure 8.9).
Recall that idproc4 is the only model structure with three real poles. It has
no complex poles.
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Figure 8.9 Confidence intervals (95% simultaneous confidence level) in idproc
methods for combinations of model structure and prewhitening (= method) to the
left and only prewhitening to the right. The standard benchmark (Section 7.3.1.
Negative transformation: (RMS error)−0.011=> ”The higher the better”. (t233b2)
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• Two of the best choices of method are idproc1*nopw and idproc2*nopw. We
called these choices idproc6 and idproc7, respectively, in Section 7.2.

Not only the model structure matters. It is also important not end in a local
minimum. Therefore, the initialization of the time-delay in the optimization is
important. Compare with Sections 5.1.1-5.1.3.

In Figure 8.10 we see that:

• On average these methods work better for random binary input signals than
step input signals.

• On average these methods seem to work better for slow (G1) than fast (G2)
systems. This can be uncertain because, even if the intervals for G1 and G2

do not overlap, they are not so much separated and their length are uncertain
because the prerequisites for the analysis was not completely fulfilled.

8.5 Discrete-Time One-Step Explicit Methods

In this section, parameters are chosen and properties are studied in some discrete-
time one-step explicit methods (Section 5.2). These methods are here also called
arxstruc type methods.

8.5.1 Choice of parameters in arxstruc type methods

The arxstruc type methods (Section 5.2) arxstruc, oestruc and met1struc (Sec-
tion 7.2) were simulated in the standard benchmark (Section 7.3.1). The number
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Figure 8.10 Confidence intervals for pair-wise comparisons (95% simultaneous
confidence level) of input signal types (left) and systems (right) for the average over
idproc1-idproc5 in the standard benchmark (Section 7.3.1. Negative transformation:
(RMS error)−0.011=> ”The higher the better”. (t233b2)
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of trials was 2048 for arxstruc, 192 for oestruc and 512 for met1struc. The reason for
the different number of trials is the very different execution times for the methods,
cf.Section 9.4. Three method factors were varied during the simulations, namely
the model orders na (or nf ) and nb and using prewhitening (Section 7.3) or not.

For the method arxstruc we see in Figure 8.11 that there are many values of na,
nb and prewhitening that give approximately the same average RMS error. The
lowest RMS error is obtained for na = 10, nb = 3 and without prewhitening in this
simulation. However, we prefer na = 10, nb = 5 and without prewhitening because
these values gave the best result in a similar simulation. We have called this com-
bination arxstruc3 in Section 7.2. A choice of parameters by the aid of confidence
intervals was not possibly because the prerequisites were not fulfilled [Bjö03f].

For the method oestruc it is seen in Figure 8.12 that on average the best model
orders are the lowest (nf = 2 and nb = 1) of the tested. If nb > 1 this would
enable more models to give a low optimization criterion value but with different
time-delays. It is also seen in the same figure that without prewhitening is the best.
In [Bjö03f] confidence intervals confirm that nf = 2, nb = 1 and no prewhitening
is the best choice. We called this combination oestruc3 in Section 7.2.

In Figure 8.13 it is seen that on average the best model parameters for the
method met1struc with are na = 10, nb = 1 and without prewhitening. We called
this combination met1struc3 in Section 7.2. A choice of parameters by the aid
of confidence intervals was not possible because the prerequisites were not ful-
filled [Bjö03f].

From Figures 8.11-8.13 and execution time measurements we see that
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Figure 8.11 RMS error for arxstruc as a function of the model orders na and
nb and prewhitening or not. Axis labels and tick mark labels are explained in
Section 7.5.2. (t234b2)
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ĝ(t)

w(t)
r(t)
e(t)
u(t)
y(t)
v(t)
H(s)
F (s)
G(s)

• oestruc has lower RMS error (0.85 sampling intervals) than arxstruc and
met1struc but is very slow (One estimation took 13.0 s on a SunBlade 100
computer).

• met1struc has a RMS error that is nearly as good as for oestruc (met1struc:
0.95 sampling intervals) and is fast (One estimation took 0.741 s ).

• arxstruc has a higher RMS error (1.6 sampling intervals) but is very fast (One
estimation took 0.143 s).

8.5.2 More properties of arxstruc type methods

In this section another simulation is used. The three methods arxstruc3, oestruc3
and met1struc3 (Section 7.2) were put into service for high SNR (=100) in the
standard benchmark (Section 7.3.1). The worst estimates were removed by pro-
cedure 1 in Section 7.5.1. The transformation (Section 7.5.3 ) became negative:
(RMS error)−0.12. This means the higher value in the confidence interval plot the
better. We see in Figure 8.14 that
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Figure 8.12 RMS error for oestruc as a function of the model orders nf and nband
prewhitening or not. Axis labels and tick mark labels are explained in Section 7.5.2.
(t236b2)
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• On average these methods work better for fast than slow systems.

• On average these methods work better for random binary input signals than
step input signals.

8.5.3 Discussion

We found in Section 8.5.1 that oestruc is the best method in the tested cases. Also
Swanda [Swa99] consider that oestruc is better than arxstruc. It is not surprising
that oestruc is better than arxstruc since the tested systems have OE structure.
This also helps met1struc to give good results.

When estimating a discrete-time state space model (zoh sampling) of a system
with a long time-delay (longer than the sampling interval) the order of the model

will increase with one for each sampling interval of the time-delay [ÅW84, p. 42].
This could indicate that the used order 10 of the state space model in met1struc
could be too low for long time-delays. If the continuous-time time-delay is 9 sam-
pling intervals, a model order of 10 seems to be on the limit to be too low. Another
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Figure 8.13 RMS error for met1struc as a function of the model orders na and
nb and prewhitening or not. Axis labels and tick mark labels are explained in
Section 7.5.2. (t235b2)
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Figure 8.14 Confidence intervals for pair-wise comparisons (95% simultaneous
confidence level) of input signal types (left) and systems (right) for the average
over arxstruc3, met1struc3 and oestruc3. SNR = 100. Negative transformation:
(RMS error)−0.12=> ”The higher the better”. (t208b15)
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way for the state space model to handle the time-delay is to to approximate it with
non-minimum phase zero(s). In this way a lower model order can be sufficient.
This is also what happens in met1struc. However, for longer time-delays than used
in this thesis, it would be advisable to use a higher fixed model order or to chose the
model order automatically to give a good model. This can be done by giving ’best’
as the input parameter order to the function n4sid (Algorithm 9) in the Matlab
System Identification Toolbox.

The advantage of met1struc over oestruc is the lower execution time. A dis-
advantage is that it is more complicated. In applications where the time-delay
is changing but the noise does not change it should be possible to estimate the
noise model once off-line and use it in many subsequent time-delay estimations
with a modified met1struc method. It is not necessary to estimate this noise model
with a subspace state space method as in Section 5.2.3 but can by done by a less
complicated method.

In Section 8.5.1 the best choice of model orders for arxstruc was the highest
of the tested na and nb. The reason for this is probably that high orders are
needed to approximate the noise system well by 1/A since the true systems are
not of ARX structure. An all-pole system 1/A of enough high order should be
able to approximate the noise system enough well. Such an approximation is used
in [FMS91, p. 655]. See also the discussion in Section 5.2.3 about bias in the model
G for different cases of system/model structures and orders.

In Section 8.5.1 the best choice of model orders for oestruc was the lowest of the
tested (nf = 2 and nb = 1). These orders are enough to accurately model the true
system. The true systems are either of second or fourth order. This would mean
that nf = 2 or nf = 4 would be appropriate. On average nf = 2 is apparently
better. If the order nb were higher than 1 it would introduce an ambiguity for the
time-delay. For example, both the true time-delay and the true time-delay minus
one (with the the first B-parameter equal to zero) would give good fits to the data.
Therefore it is understandable that nb = 1.

The theoretical explanation for the choice of model orders for met1struc in
Section 8.5.1 is not clear.

8.6 Area and Moment Methods

In this section properties are discussed in area and moment methods (Sections 6.1-
6.2). The objective of using area and moment methods was to by integration avoid
the sensitivity of a single or a few values of uncertain step and impulse response
estimates. Here, that among other things are discussed.

In [Bjö03b] some observations about area and moment methods are made. Here
they are summarized:

• The area and moment methods often fail to deliver an estimate. The methods
fail when somewhere during the computations unreasonable results appear,
e.g. when an area that should be positive becomes negative. The reason is
uncertain estimates of the step and impulse responses. This should be a much
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smaller problem with measured step and impulse responses as is suggested
in [ÅH95].

• Moment methods seems to be more unreliable than area methods. Not even
with a true simulated impulse response they give a good answer. For these
methods the percentage of failed estimations was very high (>54% for all
combinations of input signals and SNR in the standard benchmark in Sec-
tion 7.3.1 but with a different definition of the SNR) in a Monte Carlo simu-
lation [Bjö03b]. Therefore these methods are not useful.

• The uncertainty of the step response estimate often increases with the time.
Since the gainK, which is used in the area methods, of the system is estimated
by the last step response coefficients this estimate often will be completely
incorrect. This has a very negative effect on the time-delay estimation. Fast
systems seem to have a larger uncertainty in the step response than slow
systems.

• For the area methods (Section 7.2) there are several things that can go wrong:

– The estimated gain K̂ can get negative if the estimated step response
falls below zero at the end of the estimated step response.

– The estimated area Â0 can become negative if too much of the estimated
step response is above the estimated gain K̂. This can happen if the
estimated gain is too low.

– The time Tar can be estimated to a too high value. This can happen if
the gain K is estimated to a too low value.

– The time-delay estimate can be calculated to a negative value. This
happens if either or both T̂ar is too low and T̂ is too large. The time
constant T̂ may become too large if the estimated gain K̂ is too low.

• For area and moment methods, the slow low order system (G1) is easier than
the the fast system (G2). The reason is that the integrals in the area and
moment methods can be better estimated when the function to integrate
(impulse or step response ) does not change rapidly. This is the inverse of
the behavior of many other methods, e.g. thresholding of impulse response,
which can easier detect a rapid change than a slow one.

• It is intuitive that fast system is harder for area methods because the A1

integral (Equation 6.4) will be done over a very short time span where the
step response is nonzero.

In [Bjö03b] method parameters were chosen. Below, the terms 1stord and 2ndord
mean the first and second order model structures in Section 6.1-6.2. The terms
trapez1 and sum1 are two ways to integrate numerically [Bjö03b]. The term nopw
means without prewhitening the input signal.

• Area methods without prewhitening is better than with prewhitening.
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• For the area methods there were two combinations of method parameters
which were better than the other. One of them, the combination nopw*1stord*
trapez1, we call area2.

• There is one combination of method parameters for moment methods which
seems to be better than the other: nopw*1stord*sum1. This combination we
call moment2.

Some interesting points are:

• The uncertainty of the estimates of the impulse and step response estimates
are not used in the area and moment methods. If we did not throw away this
information we probably could obtain better estimates of the time-delay.

• In the area methods we numerically integrate twice, first from impulse to step
response, then to A0 and A1 (Equations 6.3 and 6.4). There will be numerical
errors in both integrations. This could deteriorate the time-delay estimate.
But still the area methods are better than the moment methods.

• It is clear that it is important to estimate the gain K (Equations 6.1 and 6.2)
correctly in area methods.

• Moment methods are weighting up the later parts of the impulse or step
response. This can give large errors because the signal to noise ratio (SNR)
is lowered (compare with Section 6.3).



9
Comparing Time-Delay Estimation
Methods in Open and Closed Loop

In the previous chapter, parameters of time-delay estimation (TDE) methods were
chosen. In this chapter, those methods with the chosen parameters are compared
using Monte Carlo simulations, mainly regarding the estimation quality but also
regarding the execution time. In Section 9.1 results for open loop simulations
with fixed systems are displayed, in Section 9.2 results for open loop with random
systems and in 9.3 for closed loop with fixed systems. Execution times are shown
in Section 9.4.

9.1 Open Loop Simulations with Fixed Systems

In this section several TDE methods are compared in open loop with fixed systems.

9.1.1 The standard benchmark

This section contains results from comparing several methods in open loop simula-
tions with fixed systems (The standard benchmark in Section 7.3.1). The methods
are defined in Section 7.2. See also the list of methods on page 2.

Figure 9.1 shows the average (over all factors) RMS estimation error for several
methods when the 90%, 95% and 100% best estimates are retained (procedure 1
in Section 7.5.1). The methods oestruc3 and met1struc3 are the best methods
when 100% are used. For 90%-95%, they are challenged by idproc7. The methods
oestruc3 and met1struc3 are better than arxstruc3. The method idproc7 is better
than idproc6. The method idproc7 mostly gives very accurate estimates but some-
times fails. It is favored by only retaining the 90%-95% best estimates. The method

107
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Figure 9.1 Average RMS error for different methods in open loop with fixed
systems. Average over the environment factors in the standard benchmark (Sec-
tion 7.3.1). (t208b8)
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lagudap2 also belongs to the best methods. The methods lagucont1, idimp5, idstep5,
idimpCusum4, idstepCusum4, area2, moment2 and fischer8 often fail.

Figures 9.2-9.3 show the RMS estimation error as a function of the factor levels.
Figure 9.2 displays the RMS error for different combinations (cases) of input signal
and SNR when the 95% best estimates are used. Here we can see which method
to choose when the input signal and/or the SNR is given. We can also choose the
best input signal. We see that RBS signals are better than step signals. For high
SNR there are more methods among the best than for low SNR. The discrete-time
one-step methods oestruc3 and met1struc3 belong to the best methods in all cases.
The time domain approximation methods are very inaccurate for step inputs but
can be really accurate for RBS and high SNR. The area and moment methods and
lagucont1 are not good in any case. The other frequency domain approximation
methods (lagudap2, firdap2, arxdap2 and oedap2) and elnaggar are neither among
the best nor the worst methods for any case except for lagudap2, which is among
the best for steps with high SNR. The method idproc7 is among the best methods
for steps and with low SNR for RBS signals. For high SNR and RBS the method
idproc7 is beaten by several methods. The method idproc6 is not as good as idproc7
for any case. The method fischer8 is very inaccurate for RBS signals but among
the best for step input signals. It is especially good for low SNR.

Figure 9.3 displays the RMS error for different combinations of method and
system. The reason why the first order model structure idproc1 gives good results
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Figure 9.2 Average RMS error for different methods, SNR and input signal types
in open loop with fixed systems. The 95% best estimates are retained (Sec-
tion 7.5.1). Axis labels and tick mark labels are explained in Section 7.5.2. (t208b9)
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with the second order system G2 is probably because one of the time constants of
G2 is very fast (Equation 7.3) and therefore G2 can be well approximated with a
first order system.

All the methods in Figures 9.1-9.3 could not be analyzed together by ANOVA
and confidence intervals because the methods behave very differently, which makes
it difficult to fulfill the requirements (Section 7.5) of this type of analysis.

9.1.2 Confidence intervals for step input

This section compares some promising methods (oestruc3, met1struc3, lagudap2,
idproc6, idproc7 and fischer8) for the case when we cannot choose other input sig-
nals than steps. The analysis is performed with ANOVA and confidence intervals
for pair-wise comparisons when the SNR was low (SNR=1). Table A.8 in Ap-
pendix A.6 shows the ANOVA table and Figure 9.4 confidence intervals for pair-
wise comparisons of the methods. Appendix A.6 also shows validation graphs of
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Figure 9.3 Average RMS error for different methods and systems in open loop with
fixed systems. Average over the environment factors in the standard benchmark
(Section 7.3.1). The 95% best estimates are retained (Section 7.5.1). Axis labels
and tick mark labels are explained in Section 7.5.2. (t208b9)
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the prerequisites for the ANOVA and confidence intervals. For the interpretation
of the table and graphs, see Section 7.5.3.

When we look at Figure 9.4, we cannot say that there is any significant differ-
ence between oestruc3, met1struc3 and fischer8 (overlapping or nearly overlapping
intervals) but we can say that these methods are significant better than the other
methods in the graph. We also see that the difference between lagudap2 and idproc7
is not significant but these two methods are significantly different from the other
methods in the graph. The method idproc6 is significantly worse than the the other
methods in the graph. The standard deviation of the residuals (Figure A.23) is not
constant, but the above result is very clear so that the non-constant standard devi-
ation does not change our conclusions. The residuals are near Gaussian as desired
(Figure A.22).

For the high SNR (SNR=100) an analysis with ANOVA and confidence intervals
was not possible because the prerequisites for the analysis was not fulfilled.
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Figure 9.4 Confidence intervals (95% simultaneous confidence level) for some
promising methods (Section 9.1.2) with input signal Steps at SNR = 1 in open
loop with fixed systems. Positive transformation (RMS error)0.48=> “The lower
the better”. Tukey’s honestly significant difference criterion [Mat01] is used. See
Section 7.5.3 for the interpretation of the graph. (t208b10.m)

1.2 1.4 1.6 1.8 2

6: fischer8

5: idproc7

4: idproc6

3: lagudap2

2: met1struc3

1: oestruc3

Factor: Method

PSfrag replacements

t
u(t)
y(t)
s(t)

gts(t)

T̂d
Td

δ(t− Td)
g(t)
gr(t)
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9.2 Open Loop Simulations with Random Systems

This section contains results from comparing several methods in open loop simu-
lations with random systems. A short description of the methods can be found in
Section 7.2.

The continuous-time random systems are of 10th order, can have both positive
and negative zeros but only negative poles (stable). The systems are integrating
(pole at zero) or non-integrating and have positive or negative random gain. The
time-delay is random between 0 and 15 sampling intervals.

Figure 9.5 shows the average (over all factors) RMS estimation error for different
methods when the 90%, 95% or 100% best estimates are kept (procedure 1 in
Section 7.5.1). The results are similar to the ones for fixed systems (Figure 9.1).
The methods idproc6, idproc7 and oestruc3 give astonishing good results for the
10th order systems despite the fact that they use low order models. They are
treated unfairly compared to methods using high order models, e.g. arxstruc3,
met1struc3.

The RMS error is for most methods somewhat higher than for the fixed systems
used in Figure 9.5. The RMS error of arxstruc3, firdap2, elnaggar and idproc6 seems
to be nearly unchanged. The CUSUM and area methods have a much higher
RMS error, probably because these implementations are not adapted to all types
of systems. Also lagudap2 has a much higher RMS error and is on approximately
the same level as firdap2, arxdap2 and oedap2.
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Figure 9.5 Average RMS error for different methods on random systems in open
loop. (t215b2)
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9.3 Comparing the time-delay estimation meth-

ods in closed loop

9.3.1 Closed loop simulation results

This section contains results from comparing several methods in closed loop simu-
lations with fixed systems. The simulation setup is described in Section 7.4. The
same methods as in Sections 9.1-9.2, but without moment2 were used. They are
described in Section 7.2. We have plotted the RMS error of the time-delay esti-
mates. The worst estimated values were removed by procedure 1 in Section 7.5.1
(95% kept).

In Figure 9.6 the method oestruc3 using the system input u(t) seems to be the
best method. This is in accordance with the results in [Swa99]. Also in open loop
(Sections 9.1-9.2) oestruc3 was the best method. Most methods are better with the
system input u(t) than the reference signal r(t). There are several methods that
compete for the second best result, e.g. arxstruc3, lagudap2, arxdap2, idproc6 and
idproc7, all using u(t). If subsample time-delay estimates are needed, the methods
lagudap2, idproc6 and idproc7 seems to be the best.

For the interested reader, Figures 9.7-9.9 show the RMS estimation error as a
function of the system, controller and noise model, respectively. Since the same
simulation setup was used in [IHD00, IHD01a, IHD01b] comparisons are possible.
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Figure 9.6 Average RMS error for different methods in closed loop. The 95%
best estimates are retained (Section 7.5.1). Axis labels and tick mark labels are
explained in Section 7.5.2. (t176d2)
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9.3.2 Discussion

According to [Lju99, p. 433], when the noise model is fixed H(q, θ) = H∗(q), the
estimated model will in closed loop converge to

G∗ = arg min
θ

∫ π

−π
|G0(eiω) +B(eiω)−G(eiω , θ)|2 · Φu(ω)

|H∗(eiω)|2 dω,

when the number of data N →∞, where the bias term B(eiω) is

B(eiω) =
λ0

Φu(ω)
· Φeu(ω)

Φu(ω)
· |H0(eiω)−H∗(eiω)|2.

This means that when estimating OE models in closed loop there will be bias in
the estimate if the noise model H∗(q) is not equal to the true noise system H0(q),
even if the system model G(q, θ) is capable of describing the true system G0(q). In
open-loop, on the other side, there will be no bias for an OE model, irrespective
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Figure 9.7 Average RMS error for different methods and systems in closed loop.
The 95% best estimates are retained (Section 7.5.1). Axis labels and tick mark
labels are explained in Section 7.5.2. (t176d2)
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of the true noise system, if the system model G(q, θ) is capable of describing the
true system G0(q) [Lju99]. In Figure 9.9 for the method oestruc3 using the system
input u the RMS error seems to be better when the noise is white noise (oe). This
is in accordance with the theory. When using the reference signal r white noise
does not seem to be easier (against the theory) but using r is less interesting since
it gives a higher RMS error.

9.4 Execution Time

Table 9.1 show the execution time on a SUN SunBlade 100 computer of the meth-
ods in this thesis. The method elnaggar is very fast. One call took 0.017 sec-
onds. Second fastest is arxstruc3. Third fastest are firdap2 and arxdap2. After that
there is a large group consisting of met1struc3, idimp5, idstep5 idimpCusum4, idstep-
Cusum4, area2, moment2, lagucont1, lagudap2, oedap2 and kurz with an execution
time around one second. Then comes fischer8 for subsequent calls if the same input
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Figure 9.8 Average RMS error for different methods and controllers in closed loop.
Axis labels and tick mark labels are explained in Section 7.5.2. (t176d2)
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signal is used. The methods oestruc3, idproc6 and idproc7 are the slowest methods
if the first call to fischer8 is excluded. They have an execution time of nearly 10
seconds.

If different input signals are used in all calls, the absolutely slowest method is
fischer8 with 65.5 seconds . If using the same input signal in all calls, the execution
time for the first and subsequent calls to fischer8 are very different. The first call
to fischer8 took 65.15 seconds (as above) but subsequent calls took 2.86 on average.
The reason is explained in Section 8.3.4.
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Figure 9.9 Average RMS error for different methods and noise models in closed
loop. The 95% best estimates are retained (Section 7.5.1). Axis labels and tick
mark labels are explained in Section 7.5.2. (t176d2)
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Table 9.1 Execution time for many methods in seconds on a SUN SunBlade 100
computer. (t227b1)

Method Time Method Time Method Time

oestruc3 9.77 area2 1.26 elnaggar 0.017
arxstruc3 0.12 moment2 0.97 kurz 1.07
met1struc3 0.82 lagucont1 0.81 idproc6 8.40
idimp5 0.69 lagudap2 0.83 idproc7 9.76
idstep5 0.74 firdap2 0.22 fischer8 (first call) 65.5
idimpCusum4 0.68 arxdap2 0.22 fischer8 (subsequent calls) 2.86
idstepCusum4 0.74 oedap2 0.70



10
Discussion and Conclusions

This chapter contains further discussion in Section 10.1. Then, in Section 10.2,
recommendations for the choice of time-delay estimation (TDE) method for differ-
ent cases are given. Following, Section 10.3 contains conclusions about properties
of different classes (Chapter 3) of TDE methods. Finally, in Section 10.4 some
suggestions for future work are listed.

10.1 Additional Discussion about Open Loop

In this section we will give some additional discussion about open-loop. The TDE
methods are described in Section 7.2.

The methods idimp5, idstep5, idimpCusum4 and idstepCusum4 often miss to
detect the start of the impulse response (Sections 4.1.1 and 4.1.3), especially for low
SNR, because of noisy and uncertain impulse and step response estimates [Bjö03d].
Prewhitening of step input does not make idimp4 perform better (Section 8.1.1).
Prewhitening can make the cross-correlation contain fewer maxima that compete
with the correct one [Car93]. Maybe prewhitening amplifies the noise in certain
frequency regions and thereby counteracts the increase in estimation performance.

The method lagudap2 performs well in most cases (but not best) and seldom
really bad. Two reasons for lagudap2 being better than firdap2, arxdap2 and oedap2
are probably that typical impulse responses can be described well by Laguerre
functions and that the model orders of the latter methods are not optimal. The
model orders of the DAP methods should also have been selected via Monte Carlo
simulations, which was not done in this thesis (except for the zero guarding). The
results in [Hor00] for lagudap2 is in agreement with our results. lagucont1 often fails,

117



118 Chapter 10 Discussion and Conclusions

probably because it has no protection against noise-corrupted zeros. The results
in [Hor00] for lagucont1 is better than our results. Perhaps, the implementation
in [Hor00] has some protection against bad zeros.

idproc7 is better than idproc6 as it has a more suitable model structure for the
used systems. Both these model structures have a too low order for some of the
tested systems. Therefore they will have some bias. Since oestruc3 and met1struc3
have the correct model structure (output error) they are better than arxstruc3.

area2 and moment2 often give very inaccurate estimates due to poor estimates
of step and impulse responses [Bjö03b, Ing03]. These methods would probably

perform better with measured step and impulse responses as in [ÅH95]. Another
improvement is described in [Ing03].

The method fischer8 often give very poor estimates. This is probably due to
its inability to describe certain signals in the Laguerre domain [Bjö03e]. On the
other hand, fischer8 performs astonishingly well for steps, especially at low SNR.
Perhaps it would be even better with more Laguerre coefficients. The used number,
150, was on the limit of being too computer intensive.

Some of the tested methods can estimate subsample time-delays. In, for exam-
ple, time-delay of arrival estimation of the direction of impinging electro-magnetic
waves in signal intelligence [HR97, FHJ02] or radar this is necessary.

10.2 Recommendations for Choice of Estimation
Method

This section gives recommendations on which TDE method to choose in different
cases. The methods are described in Section 7.2.

In open loop the method oestruc3 is best on average with respect to estimation
quality (Sections 9.1-9.2). If sub-sample time-delay estimates are needed, the best
method (Section 9.1) is idproc7 but keep in mind that the model structure should
be the same as the true system. On the negative side, both oestruc3 and idproc7
have long execution times, which could be a limiting factor in some applications.
There are other, much faster, methods, e.g. met1struc3, arxstruc3 and lagudap2,
with nearly as good estimation quality.

Some of the tested methods can deliver estimates of subsample time-delays.
These are the frequency domain methods, e.g. lagudap2, and the continuous-time
one-step explicit methods, e.g. idproc6 and idproc7.

Recommendations for the choice of input signal and estimation method in open
loop for the best estimation quality are:

• If you cannot use other input signals than steps: For high SNR use oestruc3,
met1struc3, lagudap2, idproc7 or fischer8. If the SNR is low use only oestruc3,
met1struc3 or fischer8. If subsample time-delay estimates are needed for low
SNR use lagudap2 or idproc7 (Figures 9.2 and 9.4).

• If you can choose the input signal, use RBS (Random Binary) signals. For
high SNR the best methods are oestruc3 and idimp5. There are, however,
more methods giving good results. If subsample time-delay estimates are
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Figure 10.1 Classes of active time-delay estimation methods (Chapter 3).
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desired, use idproc7. For low SNR use oestruc3, met1struc3 or idproc7. If the
SNR is unknown, use only oestruc3 (or idproc7 for sub-sample time-delays).
See Figure 9.2.

Also in closed loop with step input the method oestruc3 is best on average with
respect to estimation quality. If sub-sample time-delay estimates are needed, the
best methods are idproc6, idproc7 and lagudap2. For these methods use the system
input signal (not the reference signal) as the input to the estimation method.

Note, that the method lagudap2 uses zero guarding (Section 4.2.7), which is a
modification to the original method described in [Hor00, IHD01b].

10.3 Conclusions about Parameters and Proper-

ties of Methods

We have made a classification of existing time-delay estimation methods according
to underlying principles (Chapter 3 and Figure 10.1). Different classes have dif-
ferent properties and are suitable in different cases. Some methods are, however,
clearly inferior to others.

Summary of comparison and properties of estimation methods:

• The best result in open loop is achieved with prediction error methods, e.g.
oestruc3 and idproc7 (Section 7.2), where the time-delay is an explicit param-
eter (belong to one-step methods) (Sections 9.1-9.2). The continuous-time
methods of this class can estimate subsample time-delays.

• Thresholding methods (belong to the time domain approximation methods)
do not perform so well. The reason is problems to discover the start of the
impulse response from fluctuating estimates.
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Table 10.1 This table tells if some methods are significantly better for slow than
fast systems (an X in the “slow” column), the opposite (an X in the “fast” column)
or if nothing can be said (no X). The same applies for RBS and steps as input.

System Input
Method slow fast RBS steps

Thresholding methods (Sections 4.1 and 8.1.2) X X
DAP methods (Sections 4.2.5 and 8.2) X X

Laguerre domain methods (Sections 4.3 and 8.3) X X
Idproc methods (Sections 5.1.1 and 8.4) X

Arxstruc type methods (Sections 5.2 and 8.5.2) X X
Area and moment methods (Sec. 6.1-6.2 and 8.6) X

• DAP methods (belong to the frequency domain approximation methods) are
among the better regarding the estimation quality and they can estimate
subsample time-delays.

• Laguerre domain approximation methods give good estimation quality for
certain types of input signals but very poor for others.

• Area and moment methods using estimated step and impulse responses are
hardly useful.

• A summary of which system and input signal is “better” for different TDE
method classes is given in Table 10.1.

Special conclusions about thresholding methods (Section 4.1) in open loop are:

• The PEM [Lju99], matched filter [Hän91], correlation analysis [Lju99], cross-
correlation method [Car93] and maximum likelihood [JD93] for estimating
the impulse response and the time-delay are in principle the same thing (Sec-
tion 4.1.2 and 4.1.5).

• Because the impulse response estimates are very uncertain, it is difficult to
find the beginning of the true impulse response. Better methods to find the
beginning than a simple threshold are needed. There are two parts in this.
First, the uncertainty of the impulse response estimate should be lowered.
Second, the change time must be estimated by going backwards from the
detection time. Integration to step response or CUSUM thresholding give
some improvement (Figure 8.2) but it is not enough (Figure 9.1). Some more
advanced approaches are described in [CHWW99, Isa97, KG81], one of which
is tested in our simulations (kurz) [KG81].

• Prewhitening has no large influence on the estimation quality. On aver-
age these methods work better for fast than for slow systems and better
for random binary input signals than for step input signals. See Figure 8.1
and [Bjö03b, Bjö03d].

Conclusions about frequency domain methods (Section 4.2) in open loop (Some
more more detailed conclusions about DAP methods can be found Section 8.2.4.):
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• Time-delay estimates relying on the allpass part of the system estimate can
be very incorrect if zeros of the system fall on the incorrect side of the stability
boundary due to the noise (Section 4.2.6). A solution is to remove zeros near
the stability boundary on the incorrect side (Section 4.2.7).

Conclusions about the Laguerre domain methods which are tested in this thesis
(Section 4.3) in open loop (More detailed conclusions can be found in Section 8.3.6.):

• These methods are suitable for input signals which can be well approximated
by Laguerre functions, e.g. a few steps (Figures 4.12, 8.6 and 9.2 and re-
port [Bjö03e]). Other types of input signals give very poor estimates.

• These methods give better time-delay estimates of systems with not too fast
dynamics despite the fact these methods were derived for pure time-delay
systems (Figure 8.8 and report [Bjö03e]).

• The execution time is high but can be reduced if the same input signal is
used in subsequent estimations (Section 8.3.4).

Conclusions about continuous-time one-step explicit methods (Section 5.1.1):

• For a first oder model with time-delay there is at most one minimum within
each sampling interval (Section 5.1.2). (There can be a single minimum in
region extending over several sampling intervals if LP-filtering is performed.
See [FMS96] and Section 5.1.3)

• No matter how close to the true time-delay we start the optimization, there
are still cases which lead to an incorrect local minimum. Not even close
to the true time-delay, the Cramer Rao lower bound is always useful. See
Section 5.1.2.

• Using no prewhitening of the input signal is best (Figure 8.9). On average
these methods work better for random binary input signals than for step
input signals (Figure 8.10) .

Conclusions about arxstruc type methods (Section 5.2) in open loop:

• High model orders are the best for arxstruc to be able to accurately describe
the system and the noise (Section 8.5.1).

• The model orders for oestruc should be 1 for the numerator to avoid ambi-
guity in the time-delay and be close to the true order for the denominator
(Section 8.5.1).

• The prefiltered arxstruc, here called met1struc, has nearly as good estimation
quality as oestruc but is much faster. If the true noise character is unchanged
for repeated time-delay estimations with met1struc, the execution speed is
nearly as high as for arxstruc (Sections 8.5.1-8.5.2).

• On average these methods are better for fast than for slow systems (Fig. 9.3,
8.14) and better for random binary input signals than for step input signals
(Figures 9.2 and 8.14).
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Conclusions about sampling methods (Section 5.3):

• It is possible to derive an explicit expression for the time-delay of a first order
system with time-delay after zero-order-hold sampling (Section 5.3.3).

Conclusions about area and moment methods utilizing estimated step and impulse
responses (Section 6.1) in open loop:

• Area and moment methods using estimated impulse and step responses often
fail due to inaccurate estimates of the impulse and step responses (Section 8.6
and report [Bjö03b]). (An improvement is described in [Ing03] but not tested

here. In [ÅH95] measured impulse and step responses are used but not here.

• Moment methods are less reliable than area methods and are not useful.

• On average these methods work better for slow systems than for fast systems
(Section 8.6 and report [Bjö03b]). This is the opposite as for thresholding
methods, which also use estimated impulse and step responses.

10.4 Future Work

Some interesting future work is:

• Make a better estimate of the change time in thresholding methods (Sec-
tions 4.1.1 and 4.1.3) and test maximum likelihood based detection methods.

• Continue study of methods for separating the time-delay from the dynamics.
See Section 4.1.1 and 4.1.4.

• Continue study of local minima in continuous and discrete-time one-step ex-
plicit methods.

• Future work on sampling methods could be the following: Implement and test
TIDEA (Section 5.3.2). Implement and test the method with exact time-
delay from the sampling process (Section 5.3.3). This method uses a first
order plus time-delay model structures. Derive the exact time-delay from the
sampling process also for more complex model structures than first order plus
time-delay, e.g. second order model with time-delay, and for first-order-hold
sampling. A second order model structure as in idproc7 (Section 7.2) would
probably be better for the standard benchmark (Section 7.3.1).

• A comprehensive comparison of TDE methods on real data, for example: hair
dryer [Lju99, p. 525], speech communication between driver and back seat
passenger in a car [Nyg03] or radar range estimation.

• Future work on applications, e.g. system identification for control; diagnosis
and performance monitoring; direction of arrival estimation in signal intelli-
gence, radar and mobile communications; and range estimation in radar.
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[Bjö] S. Björklund. ESDATA. A Matlab toolbox for managing and analyz-
ing data from factorial experiments. User’s guide. Technical Report
LiTH-ISY-R-xxxx, Department of Electrical Engineering, Linköping
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Linköping University, Linköping, Sweden, June 2003.

[Pag54] E. S. Page. Continuous inspection schemes. Biometrika, 41:100–115,
1954.



Bibliography 129

[Pup85] R. Pupeikis. Recursive estimation of the parameters of linear systems
with time delay. In Proc. 7th IFAC/IFORS Symp. Identification and
System Parameter Estimation, pages 787–792, York, UK, July 1985.

[Qua81] A. H. Quazi. An overview on the time delay estimate in active and pas-
sive systems for target localization. IEEE Transactions on Acoustics,
Speech and Signal Processing, 29(3):527–533, June 1981. pt. 2.

[SBS97] A. Soumelidis, J. Bokor, and F. Schipp. Representation and approxi-
mation of signals and systems using Generalized Kautz Functions. In
Proceedings of the 36th Conference on Decision and Control, pages
3793–, San Diego, California, USA, December 1997.

[SIT] SITB. Matlab system identification toolbox v. 5.0.1 (R12.1). The
Mathworks Inc.

[Sum95] A. Sume. Kursmaterial i radarteori. Technical Report FOA-D–95-
00108-3.3-SE, Department of Sensor Technology, Swedish Defence Re-
search Establishment, Box 1165, 581 11 Linköping, Sweden, April
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A
ANOVA and Confidence Interval

Validation

For the ANOVA and confidence intervals used in this thesis to be applicable some
prerequisites must be fulfilled (Section 7.5.3). This appendix contains validation
graphs to determine if the prerequisites are fulfilled. It also contains ANOVA
tables (Section 7.5.3). The sub-appendices appear in the order of the corresponding
analyses in the main part of this thesis.

A.1 Validation of ANOVA and Confidence Inter-
vals for Time Domain Methods

A.1.1 Choosing parameters of direct thresholding of impulse
response

This appendix contains the ANOVA table (Table A.1), transformation graph (Fig-
ure A.1) and validation graphs (Figures A.2-A.3) for the analysis in Section 8.1.1.

A.1.2 Properties of direct thresholding of impulse response

This appendix contains the ANOVA table (Table A.2), transformation graph (Fig-
ure A.4) and validation graphs (Figures A.5-A.6) for the analysis in Section 8.1.2.
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Figure A.1 Plot for choosing a variance-stabilizing transform [Mon97] for ANOVA
for choosing parameters in the method idimp4 (Section 8.1.1). (t228b4.m)
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Figure A.2 Residual analysis for ANOVA and confidence intervals for choosing
parameters in the method idimp4 (Section 8.1.1). (t228b4.m)
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Table A.1 Parts of the ANOVA table for choosing parameters in the method
idimp4 (Section 8.1.1). Constrained (Type III) sums of squares [Mat01]. (t228b4.m)

Source Sum Sq. d.f. Mean Sq. F Prob>F

InType 7132.2532 2 3566.1266 46034.6821 0

Prewhite 0.29015 1 0.29015 3.7455 0.053229

SNR 590.9226 1 590.9226 7628.1459 0

Sys 379.4393 3 126.4798 1632.7117 0

threshold 2756.3471 2 1378.1736 17790.6701 0

...

Prewhite*threshold 0.13934 2 0.069672 0.89938 0.40715

...

Error 78.0858 1008 0.077466

Total 17994.5698 1151

Table A.2 Parts of the ANOVA table for studying properties of the method idimp4
(Section 8.2.1). All values in the column “Prob>F” are zero. Constrained (Type
III) sums of squares [Mat01]. (t229b5)

Source Sum Sq. d.f. Mean Sq. F Prob>F

Method 55.7444 3 18.5815 2080.7382 0

InType 4244.999 2 2122.4995 237676.0025 0

SNR 850.0346 1 850.0346 95186.2773 0

Sys 186.3467 3 62.1156 6955.6581 0

Method*InType 124.0827 6 20.6804 2315.7814 0

Method*SNR 26.6615 3 8.8872 995.1773 0

Method*Sys 44.479 9 4.9421 553.4135 0

InType*SNR 719.7577 2 359.8789 40298.9837 0

...
Error 2.5719 288 0.0089302

Total 6998.4628 383

A.2 Properties of DAP Methods

This appendix contains the ANOVA table (Table A.3), transformation graph (Fig-
ure A.4) and validation graphs (Figures A.5-A.6) for the analysis in Section 8.1.2.
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Figure A.3 Residual standard deviation versus factor levels for ANOVA and con-
fidence intervals for choosing parameters in the method idimp4 (Section 8.1.1).
(t228b4.m)
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Table A.3 Parts of the ANOVA table for studying properties of DAP methods
(Section 8.2.2). Constrained (Type III) sums of squares [Mat01]. (t208b16)

Source Sum Sq. d.f. Mean Sq. F Prob>F

Method 11.1833 3 3.7278 1830.486 0

InType 21.562 2 10.781 5293.8965 0

Sys 4.6106 3 1.5369 754.6695 0

Method*InType 2.6205 6 0.43676 214.4654 0

Method*Sys 3.6425 9 0.40473 198.7364 0

InType*Sys 4.6853 6 0.78089 383.4469 0

Method*InType*Sys 2.1486 18 0.11936 58.6128 0

Error 0.29326 144 0.0020365

Total 50.7462 191

A.3 Validation of ANOVA and Confidence Inter-

vals for Laguerre Domain Methods

A.3.1 Several Laguerre domain approximation methods with
only steps

In this section we show validation graphs for the ANOVA and confidence intervals
in Section 8.3.2. The used transformation [Mon97] is depicted in Figure A.10. We
see in Figures A.11-A.12 that the prerequisites are approximately fulfilled [Mon97].
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Figure A.4 Plot for choosing a variance-stabilizing transform [Mon97] for ANOVA
for studying properties of the method idimp4 (Section 8.1.2).

−16 −14 −12 −10 −8 −6 −4 −2 0 2
−16

−14

−12

−10

−8

−6

−4

−2

0

log10(cellAbsMeans(:))

lo
g1

0(
ce

llS
td

(:)
)

Before transformation.: Cell std vs. mean

transf=0.887646

PSfrag replacements

t
u(t)
y(t)
s(t)

gts(t)

T̂d
Td

δ(t− Td)
g(t)
gr(t)
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Figure A.5 Residual analysis for ANOVA and confidence intervals for studying
properties of the method idimp4 (Section 8.1.2).

−0.2 0 0.2 0.4
0.001
0.003
0.01 
0.02 
0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 
0.98 
0.99 

0.997
0.999

Data

P
ro

ba
bi

lit
y

Normal plot of residuals

−0.4 −0.2 0 0.2 0.4 0.6
0

20

40

60

80

100

120
Histogram of residuals

No resids=384

0 100 200 300 400
−0.4

−0.2

0

0.2

0.4

0.6
Residuals vs. time

Time

R
es

id
ua

ls

−5 0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6
Residuals vs. fitted value

Fitted value

R
es

id
ua

ls

PSfrag replacements

t
u(t)
y(t)
s(t)

gts(t)

T̂d
Td

δ(t− Td)
g(t)
gr(t)
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Figure A.6 Residual standard deviation versus factor levels for ANOVA and con-
fidence intervals for studying properties of the method idimp4 (Section 8.1.2).
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Table A.4 Parts of the ANOVA table for several Laguerre domain approximation
methods (Section 8.3.2) with input signal Steps. SNR = 1. Constrained (Type III)
sums of squares [Mat01]. (t224b1)

Source Sum Sq. d.f. Mean Sq. F Prob>F

Method 2769.8838 7 395.6977 9274.3874 0

Sys 84.5622 3 28.1874 660.6579 0

Method*Sys 115.7668 21 5.5127 129.2071 0

Error 4.0959 96 0.042666

Total 2974.3087 127

A.3.2 The method fischer8 with step input signals at low
SNR

In this section we show validation graphs for the ANOVA and confidence intervals
in Section 8.3.3. The used transformation [Mon97] is depicted in Figure A.13. We
see in Figures A.14-A.13 that the prerequisites are approximately fulfilled [Mon97].

A.4 Validation of ANOVA and Confidence Inter-
vals for Idproc Methods

This appendix comments on the use and applicability of the ANOVA and confidence
intervals in Section 8.4. The ANOVA table is given in Figure A.6 and the trans-
formation graph in Figure A.15. We see in validation graphs (Figures A.16-A.17)
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Figure A.7 Plot for choosing a variance-stabilizing transform [Mon97] for ANOVA
for studying properties of DAP methods (Section 8.2.2). (t208b16)
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Figure A.8 Residual analysis for ANOVA and confidence intervals for studying
properties of DAP methods (Section 8.2.2). (t208b16)

−0.1 −0.05 0 0.05

0.003
0.01 0.02 
0.05 
0.10 
0.25 
0.50 
0.75 
0.90 
0.95 
0.98 0.99 
0.997

Data

P
ro

ba
bi

lit
y

Normal plot of residuals

−0.1 −0.05 0 0.05 0.1
0

5

10

15

20

25
Histogram of residuals

No resids=192

0 50 100 150 200
−0.1

−0.05

0

0.05

0.1
Residuals vs. time

Time

R
es

id
ua

ls

1 1.5 2 2.5 3
−0.1

−0.05

0

0.05

0.1
Residuals vs. fitted value

Fitted value

R
es

id
ua

ls

PSfrag replacements

t
u(t)
y(t)
s(t)

gts(t)

T̂d
Td

δ(t− Td)
g(t)
gr(t)
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Figure A.9 Residual standard deviation versus factor levels for ANOVA and con-
fidence intervals for studying properties of DAP methods (Section 8.2.2). (t208b16)
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Figure A.10 Plot for choosing a variance-stabilizing transform [Mon97] for
ANOVA for several Laguerre domain approximation methods (Section 8.3.2) with
input signal Steps. SNR = 1. Transformation: (RMS error)0.96. (t224b1)
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Table A.5 The ANOVA table for fischer8 with input Stepsand SNR=1 (Sec-
tion 8.3.3). Constrained (Type III) sums of squares [Mat01]. (t225b1)

Source Sum Sq. d.f. Mean Sq. F Prob>F

Sys 380.3476 4 95.0869 2771.8578 0

Error 0.51457 15 0.034304

Total 380.8622 19
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Figure A.11 Residual analysis for ANOVA and confidence intervals for several
Laguerre domain approx. methods (Section 8.3.2) with input signal Steps. SNR =
1. (t224b1)
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Figure A.12 Residual standard deviation versus factor levels for ANOVA and
confidence intervals for several Laguerre domain approximation methods (Sec-
tion 8.3.2) with input signal Steps. SNR = 1. (t224b1)
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Figure A.13 Transform and residual standard deviation for fischer8 with input
Stepsand SNR=1 (Section 8.3.3). (t225b1)
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a. Plot for choosing a variance-stabilizing
transform.
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b. Residual standard deviation vs. factor
levels.

Figure A.14 Residual analysis for ANOVA and confidence intervals for fis-
cher8 with input signal Stepsand SNR = 1 (Section 8.3.3). Transformation:
(RMS error)4.48. (t225b1)
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Table A.6 Parts of the ANOVA table for all idproc methods (Section 8.4). Con-
strained (Type III) sums of squares [Mat01]. (t233b2)

Source Sum Sq. d.f. Mean Sq. F Prob>F

Method 0.046813 4 0.011703 377.6928 0

InType 0.076806 2 0.038403 1239.3547 0

Prewhite 0.0075127 1 0.0075127 242.4505 0

SNR 0.038715 1 0.038715 1249.4163 0

Sys 0.01284 3 0.0042801 138.1277 0

Method*InType 0.013451 8 0.0016813 54.2596 0

Method*Prewhite 0.00054883 4 0.00013721 4.428 0.00153

Method*SNR 0.0032563 4 0.00081407 26.2717 0

Method*Sys 0.027518 12 0.0022932 74.0064 0

...
Method*InType*Prewhite 0.0014093 8 0.00017617 5.6853 5.0237e-07

...
Method*Prewhite*Sys 0.00069846 12 5.8205e-05 1.8784 0.033792

...
Error 0.02231 720 3.0986e-05

Total 0.29706 959

that the prerequisites are not completely fulfilled so we must be somewhat careful
in the interpretation of the ANOVA and confidence interval. See [Mon97, Bjö03b]
for more information on this.

A.5 Validation of ANOVA and Confidence Inter-
vals for Arxstruc Type Methods

This appendix contains the ANOVA table (Table A.7), transformation graph (Fig-
ure A.18) and validation graphs (Figures A.19-A.20) for the analysis in Section 8.5.2.

A.6 Validation for Promising Methods with Only

Steps and SNR =1

In this section we show validation graphs for the ANOVA and confidence intervals
in Section 9.1.2 (SNR=1). The ANOVA table is given in Figure A.8 and the trans-
formation graph in Figure A.21. We see in Figures A.22-A.23 that the prerequisites
are approximately fulfilled.
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Figure A.15 Plot for choosing a variance-stabilizing transform [Mon97] for
ANOVA of all idproc methods (Section 8.4).
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Figure A.16 Residual analysis for ANOVA and confidence intervals for all idproc
methods (Section 8.4).
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Figure A.17 Residual standard deviation versus factor levels for ANOVA and
confidence intervals for all idproc methods (Section 8.4).
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ĝ(t)

w(t)
r(t)
e(t)
u(t)
y(t)
v(t)
H(s)
F (s)
G(s)

Table A.7 ANOVA table for properties of Arxstruc type methods (Section 8.5.2).
Constrained (Type III) sums of squares [Mat01]. (t208b15)

Source Sum Sq. d.f. Mean Sq. F Prob>F

Method 18.2507 2 9.1254 63394.725 0

InType 38.8245 2 19.4122 134858.6174 0

Sys 2.8725 3 0.95752 6651.954 0

Method*InType 5.8451 4 1.4613 10151.5517 0

Method*Sys 34.2838 6 5.714 39695.4566 0

InType*Sys 4.6773 6 0.77954 5415.5501 0

Method*InType*Sys 18.9597 12 1.58 10976.2392 0

Error 0.015546 108 0.00014395

Total 123.7291 143

Table A.8 The ANOVA table for some promising methods with input signal
Steps in open loop with SNR = 1 (Section 9.1.2). Constrained (Type III) sums of
squares [Mat01]. (t208b10)

Source Sum Sq. d.f. Mean Sq. F Prob>F

Method 5.541 5 1.1082 815.1808 0

Sys 4.0479 3 1.3493 992.5378 0

Method*Sys 2.6613 15 0.17742 130.5073 0

Error 0.097881 72 0.0013595

Total 12.3481 95



Figure A.18 Plot for choosing a variance-stabilizing transform [Mon97] for
ANOVA of properties of arxstruc type methods (Section 8.5.2). (t208b15)
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Figure A.19 Residual analysis for ANOVA and confidence intervals for properties
of arxstruc type methods (Section 8.5.2). (t208b15)
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Figure A.20 Residual standard deviation versus factor levels for ANOVA and
confidence intervals for properties of arxstruc type methods (Section 8.5.2). (t208b15)
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Figure A.21 Plot for choosing a variance-stabilizing transform for ANOVA for
some promising methods with input signal Steps in open loop with SNR = 1 (Sec-
tion 9.1.2). Transformation: (RMS error)0.48. (t208b10)
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Figure A.22 Residual analysis for ANOVA and confidence intervals for some
promising methods with input signal Steps in open loop with SNR = 1 (Sec-
tion 9.1.2). (t208b10)
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Figure A.23 Residual standard deviation versus factor levels for ANOVA and
confidence intervals for some promising methods with input signal Steps in open
loop with SNR = 1 (Section 9.1.2). (t208b10)
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P. Sp̊angéus: Hybrid Control using LP and LMI methods – Some Applications. Thesis No. 724,
1998.
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