
Linköping studies in science and technology. Thesis.
No. 1430

Structure exploitation in semidefinite
programming for control

Rikard Falkeborn

REGLERTEKNIK

AUTOMATIC CONTROL

LINKÖPING

Division of Automatic Control
Department of Electrical Engineering

Linköping University, SE-581 83 Linköping, Sweden
http://www.control.isy.liu.se

falkeborn@isy.liu.se

Linköping 2010

This is a Swedish Licentiate’s Thesis.

Swedish postgraduate education leads to a Doctor’s degree and/or a Licentiate’s degree.
A Doctor’s Degree comprises 240 ECTS credits (4 years of full-time studies).

A Licentiate’s degree comprises 120 ECTS credits,
of which at least 60 ECTS credits constitute a Licentiate’s thesis.

Linköping studies in science and technology. Thesis.
No. 1430

Structure exploitation in semidefinite programming for control

Rikard Falkeborn

falkeborn@isy.liu.se
www.control.isy.liu.se

Department of Electrical Engineering
Linköping University
SE-581 83 Linköping

Sweden

ISBN 978-91-7393-441-1 ISSN 0280-7971 LiU-TEK-LIC-2010:1

Copyright c© 2010 Rikard Falkeborn

Printed by LiU-Tryck, Linköping, Sweden 2010

To Tina

Abstract

Many control problems can be cast as semidefinite programs. However, since the size
of these problems grow quite quickly, the computational time to solve them can be quite
substantial. In order to reduce the computational time, many proposals of how to tailor-
make algorithms to various types of control problems can be found in the literature. In
this thesis, two papers with similar ambitions are presented.

The first paper deals with the case where the constraints of the optimization problem
are of the type that stems from the Kalman-Yakubovic-Popov lemma, and where some
of these constraints are so called complicating constraints. This means the optimization
problem will be greatly simplified if these constraints were not present. By the use of
Lagrangian relaxation, the optimization problem is decomposed into smaller ones, which
can be solved independently of each other. Computational results show that for some
classes of problems, this algorithm can reduce the computational time compared to using
a solver which does not take into account the nature of the complicating constraints.

In the second paper, the fact that many control-related semidefinite programs have
matrix-valued variables is utilized to speed up computations. This implies that the corre-
sponding basis matrices have a certain low-rank structure which can be exploited when
formulating the equations for the search directions, something that was discovered in the
90s and is implemented in LMI Lab. However, much has happened in the area of semidef-
inite programming since the release of LMI Lab, and new, faster algorithms have been
developed. However, the idea of using the lowrank structure in the basis matrices can still
be used. We implement this, using the publicly available solver SDPT3 in combination
with our code for formulating the system of equations for the search directions. In order
to facilitate for potential users, we also describe how the modeling language YALMIP is
changed so that this lowrank structure can be tracked, and how the code can be easily
interfaced. Computational results show that the computational time is decreased.

v

Acknowledgments

First of all, I would like to thank Prof. Anders Hansson for his skillful guidance as my
supervisor. Without him, this thesis would never have been finished. Also, Prof. Lennart
Ljung who let me join the control group, and creates a very nice working atmosphere
deserves my gratitude. I’d also like to thank Ulla Salaneck, who keeps track of everything
and everyone at the control group.

Working at the Automatic Control group is a very pleasant experience. The discus-
sions in the coffee room are always fun, and the fact that you can, at any given time,
knock on any door in the corridor, and ask any question you like, is great, and certainly
something that we should take advantage of more. Thank you all for your help.

When I started working here, there were several people who had just started or who
started shortly after me. These people are Daniel Petersson, Lic. Christian Lyzell, Lic. Per
Skoglar whom I shared a room with during my first time here, and Lic. Christian Lund-
kvist. I’ve really enjoyed taking graduate courses with you as well as discussing other
important and unimportant subjects with you!

Dr. Johan Löfberg has great knowledge about optimization, and his will to share his
knowledge is even greater. Dr. Christos Papageorgiou was post-doc here for two years,
and helped me a lot with writing COFCLUO reports during that time. Thank you both.

Other people who has made working here less cumbersome are Dr. Gustaf Hendeby,
who has written the LATEX style files which were used in order to write this thesis and
Dr. Henrik Tidefelt who always find time to help me as I never seem to make CVS,
Emacs or Shapes behave the way I want them to.

For financial support, I would like to thank the European Commission under con-
tract No. AST5-CT-2006-030768-COFCLUO and the Center for Industrial Information
Technology (CENIIT).

Last, but not least, Tina. Thank you for your love, patience and support.

Rikard Falkeborn

Linköping, February 2010

vii

Contents

1 Introduction 1
1.1 Background . 2
1.2 Contributions . 2
1.3 Thesis Outline . 3

I Background Material 5

2 Semidefinite Programming 7
2.1 Definitions . 7
2.2 Introduction . 8
2.3 Duality . 9

2.3.1 Duality Gap . 10
2.3.2 Strong and Weak Duality . 10

2.4 Optimality Conditions . 11
2.5 Algorithm . 12

2.5.1 Linearization of the KKT Conditions 12
2.5.2 Computation of steplength . 13
2.5.3 Pre- and postprocessing . 14

3 Lagrangian Relaxation 15
3.1 Introduction . 15
3.2 Complicating Constraints . 15
3.3 Lagrangian with Respect to some Constraints 16
3.4 Subgradient method of Uzawa . 17
3.5 Kelley-Cheney-Goldstein . 18
3.6 Bundle methods . 18

ix

x Contents

4 Semidefinite Programming in Systems and Control Theory 21
4.1 System considered . 21
4.2 Stability . 21
4.3 H∞-norm . 22
4.4 H2-norm . 22

Bibliography 23

II Publications 27

A A Decomposition Algorithm for KYP-SDPs 29
1 Introduction . 31

1.1 Eliminating variables from KYP-SDPs 32
2 Lagrangian relaxation . 33

2.1 Forming the Lagrangian decomposes the problem 33
2.2 Updating Z . 35

3 Numerical example . 38
4 Conclusions . 40
References . 41
A Appendix . 43

B Lowrank exploitation in semidefinite programming for control 45
1 Introduction . 47
2 Semidefinite programming . 48
3 SDPs considered . 50
4 Implementation . 51
5 Improvement of the YALMIP language 52
6 Computational Results . 53
7 Conclusions . 55
References . 56

Notational conventions

Abbreviations and Acronyms

Abbreviation Meaning
KKT Karush-Kuhn-Tucker
KYP Kalman-Yakubovic-Popov
LFT Linear fractional transformation
LMI Linear matrix inequality
LTI Linear time-invariant
SDP Semidefinite programming

xi

xii Notational conventions

Symbols, Operators and Functions

Notation Meaning
A ≺ (�) 0 A is negative (semi) definite
A � (�) 0 A is positive (semi) definite
AT Transpose of matrix A
A−1 Inverse of matrix A
TrA Trace of matrix A
〈A,B〉Y Inner product of A and B over the space Y
A⊗B Kronecker product of A and B
A⊗s B Symmetric Kronecker product of A,B ∈ Sn

vec(A) Vectorization of A
svec(A) Symmetric vectorization of A

1
Introduction

Optimization theory is about making things optimal, i.e. as good as possible. Before one
can answer what is best, one need to define what one mean with ”best”. In some cases
this is easy; in a running race, the optimal thing is to reach the goal line in as short period
of time as possible. In other cases it is not that easy to define. What is the best way to
drive between two cities for example? Is it better to drive fast to make the time to get
there short, or is it better to drive slower and save fuel? The answer to that is usually ”it
depends”. It depends on what is important to optimize over. In mathematical terms this
corresponds to selecting your cost function, i.e. the function you want to minimize. One
may also have restrictions, called constraints, which have to be fulfilled if we are going
to be satisfied with the solution. In the car example, it may be that we do not want to go
faster than a certain speed due to speed limits, or we need to be at the destination at a
certain time in order for us not to be late.

Automatic control is about making systems behave the way we want. In most mod-
ern cars, the driver can activate a cruise controller which regulates the speed of the car,
keeping it at the desired speed. There are much to consider when designing a control sys-
tem like that and, many design methods have been proposed to design control systems.
When the control system has been designed, one needs to evaluate it, and verify that the
proposed controller fulfills the design specifications. It turns out that many of the design
methods and analysis methods involve the solution of optimization problems. As control
systems become more and more complex, the optimization problems needed to be solved
also become more complex, which leads to long solution times and, in some cases, it may
also be impossible to solve these problems due to the complexity. This motivates research
which aims at tailor-making optimization algorithms which solves control problems.

1

2 1 Introduction

1.1 Background

A certain class of optimization problems that has became a hot research area during the
past two decades is semidefinite programming. An optimization problems is often refered
to as a program, while semidefinite means that one or more variables in our problem is
constrained to be symmetric and positive (or negative) semidefinite.

The fact that there exist several software packages which are publicly released makes
it relatively easy for the non-expert to use semidefinite programming. In addition to this,
many control related problems can be cast as semidefinite programs. Hence, since there
are several publicly available solvers, one might think that solving semidefinite programs
is an easy task. However, the number of variables in many problems quickly become
prohibitive. In control problems this is often due to the introduction of a large Lyapunov
variable which has the same size as the number of states in a possibly extended system.
Therefore, there have been a number of efforts to tailor-make algorithms for various num-
bers of control problems (Wallin et al., 2008, 2009, Vandenberghe et al., 2004, Liu and
Vandenberghe, 2007). In this thesis, two such tailor-made algorithms are presented.

1.2 Contributions

Paper A is an edited version of

R. Falkeborn and A. Hansson. A decomposition algorithm for KYP-SDPs. In
Proceedings of the European Control Conference, pages 3202–3207, August
2009.

The difference between these two papers are minor changes due to typographical reasons.
This paper describes an algorithm which solves so called KYP-SDP-problems with a
certain structure.

Paper B is an edited version of

R. Falkeborn, J. Löfberg, and A. Hansson. Lowrank exploitation in semidef-
inite programming for control. Technical Report LiTH-ISY-R-2927, Depart-
ment of Electrical Engineering, Linköping University, SE-581 83 Linköping,
Sweden, January 2010.

Just as in Paper A, the changes are due to typographical reasons. This paper presents
an extension to the modeling language YALMIP (Löfberg, 2004) which automatically
detects and exploits the fact that many control problems involve matrix variables, which
leads to basis matrices having a certain low rank structure.

Work not included in this thesis where the author has made minor contributions has
been published in

C. Papageorgiou, R. Falkeborn, and A. Hansson. Formulation of the stability
margins clearance criterion as a convex optimization problem. In Proceed-
ings of the 6th IFAC Symposium on Robust Control Design, 2009, pages
325–330, June 2009.

1.3 Thesis Outline 3

1.3 Thesis Outline

The thesis is outlined as follows. Part I of the thesis contains some background ma-
terial, where Chapter 2 introduces semidefinite programming. Chapter 3 is devoted to
Lagrangian Relaxation, and describes some techniques that can be used when the con-
straints of the optimization problem have a specific structure. The last in Part I is Chap-
ter 4 where some applications of semidefinite programming in systems and control theory
are presented. Part II contains the publications mentioned in Section 1.2. Paper A presents
an algorithm for a certain type of optimization problems, and Paper B presents an exten-
sion to the modeling language YALMIP (Löfberg, 2004) that utilizes the fact that in many
semidefinite programming problems, the variables have a certain matrix structure.

4 1 Introduction

Part I

Background Material

5

2
Semidefinite Programming

Optimization is the theory of finding the maximal or minimal value of a mathematical
function, given that certain equality or inequality constraints hold. Semidefinite program-
ming is a certain type of optimization where one or more variables are constrained to be
positive semidefinite. This type of problems are convex optimization problems and this
chapter will give a brief overview of some of the properties of these problems.

For a good introduction to convex optimization, see e.g. (Boyd and Vandenberghe,
2004). For a more detailed discussion of semidefinite programming, we refer to (Wolkow-
icz et al., 2000).

2.1 Definitions

Before we start by defining the problems we intend to tackle in the thesis, some prelimi-
naries must be defined.

Definition 2.1 (Vectorization). The vectorization operator vec(U) : Rn×n → Rn2
is

defined by
vec(U) =

[
u11, . . . , un1, u21, . . . , un2, . . . , unn

]T
, (2.1)

i.e. the vector that we get by stacking the columns of U .

Definition 2.2 (Symmetric vectorization). We define the symmetric vectorization op-
erator svec(U) : Sn → Rn(n+1)/2 is by

svec(U) =
[
u11,
√

2u21, . . . ,
√

2un1, u22,
√

2u32, . . . ,
√

2un2, . . . , unn
]T
, (2.2)

i.e., svec() is an operator taking symmetric matrices to vectors.

The term
√

2 is included so that the inner products of U and V and svec(U) and
svec(V) are equal, i.e.

〈U, V 〉 = 〈svec(U), svec(V)〉 . (2.3)

7

8 2 Semidefinite Programming

Here we have abused the notation by not specifying the space in which the inner products
are defined. We will continue to do this throughout the remainder of the thesis if the space
is clear from the context.

Next, we define the symmetric Kronecker product.

Definition 2.3 (Symmetric Kronecker product). The symmetric Kronecker product
between two matrices A,B ∈ Rn×n is definted as

A⊗s B =
1
2
U (A⊗B +B ⊗A)UT , (2.4)

where U ∈ Rn(n+1)/2×n2
is a matrix such that

Uvec(H) = svec(H) and UT svec(H) = vec(H), (2.5)

for all symmetric matrices H . One way to find the matrix U is the following. Label the
rows of U in the order (1, 1), (2, 1), . . . , (n, 1), (2, 2), (3, 2), . . . , (n, 2), (3, 3), . . . , (n, n)
and the columns in the order (1, 1), (2, 1), . . . , (n, 1), (1, 2), . . . , (n, 2), (1, 3), . . . , (n, n),
and then

U(i,j),(k,l) =

1 if i = j = k = l,√

2 if i = k 6= j = l or i = l 6= j = k,

0 otherwise.
(2.6)

2.2 Introduction

The basic optimization problem we will discuss in this chapter is

min
x

cTx

s.t. F0 + F(x) = S

S � 0,

(2.7)

where F(x) =
∑m
i=1 xiFi , x ∈ Rm, c ∈ Rm, Fi ∈ Sn and S ∈ Sn.

The constraint S � 0 means the matrix S is positive semidefinite. Much has been
written on how to solve this optimization problem, see for example (Wolkowicz et al.,
2000).

The semidefinite constraint in (2.7) is a convex constraint, which can be verified using
the definition of semidefinite matrices and the definition of convex sets, see e.g. (Boyd
and Vandenberghe, 2004) for details. Convex optimization problems are very attractive
from a theoretical point of view since, if some technical conditions hold, there exist algo-
rithms which solve the problems to a prespecified tolerance in a number of iterations that
are polynomial in the number of variables, the size of the constraints and the specified
tolerance. Since each iteration can be computed in polynomial time, the whole algorithm
can be run in a time that is polynomial, and hence tractable, at least from a theoretical
point of view.

2.3 Duality 9

Many problems in systems and control theory involve semidefinite programs with
matrix variables, i.e. for example find P ∈ Sn such that

min
P

TrP

s.t. ATP + PA � I,
(2.8)

with A ∈ Rn×n. This can easily be put on the form (2.7) as follows. Let E1, . . . , Em be
a basis for symmetric n × n matrices, with m = n(n + 1)/2. Now, by letting F0 = −I
and Fi = ATEi + EiA, the problem (2.8) can easily be put on the form (2.7), and a
number of available solvers can be used in order to solve the problem. We remark that
the tedious and error-prone task of transforming (2.8) into (2.7) is best left to well-tested
software, such as YALMIP (Löfberg, 2004). As we will see later, in some cases keeping
the structure of (2.8) may be beneficial.

2.3 Duality

The Lagrangian (Boyd and Vandenberghe, 2004) function to (2.7) is, if we eliminate S
from (2.7)

L(x, Z) = cTx+ 〈F0 + F(x), Z〉 , (2.9)

where Z ∈ Sn.
The Lagrange dual function is defined as the minimal value of the Lagrangian over x.

g(Z) = inf
x∈D

L(x, Z) = inf
x∈D

cTx+ 〈−F0 −F(x), Z〉 . (2.10)

Note that in our case, the domain D = Rm, but for future reference, we emphasize that
the infimum should be taken over the domain of the objective function. We remark that
when g(Z) is unbounded from below, the value of g(Z) is said to be−∞. We also remark
that g(Z) is a concave function.

If we require Z � 0, we have

g(Z) ≤ cTx∗, (2.11)

where x∗ denotes the optimal point of (2.7). To see this, pick any feasible point x̃, i.e. a
point such that F0 + F(x̃) � 0, then

L(x̃, Z) = cT x̃− 〈F0 + F(x̃), Z〉︸ ︷︷ ︸
≥0

≤ cT x̃. (2.12)

Hence we have
g(Z) = inf

x∈D
L(x, Z) ≤ L(x̃, Z) ≤ cT x̃. (2.13)

Since (2.13) holds for any feasible x̃, it also holds for the optimal value x∗.
The inequality (2.11) gives a lower bound on the optimal value of our problem. Natu-

rally, we want to find a bound that is as good as possible. It is therefore natural to consider
the optimization problem

max
Z

g(Z)

s.t. Z � 0,
(2.14)

10 2 Semidefinite Programming

called the dual problem.
We have

L(x, Z) = cTx+ 〈−F0 −F(x), Z〉 = 〈−F0, Z〉+ 〈c−F∗(Z), x〉 , (2.15)

where F∗(Z) is the dual function of F(x), which is equal to

F∗(Z) =

 〈F1, Z〉
...

〈Fm, Z〉

 . (2.16)

We note that g(Z) = −∞ unless we require c−F∗(Z) = 0. When solving (2.14), we do
not need to consider those Z for which g(Z) = −∞. Hence the Lagrange dual problem
to (2.7) can be stated as

max
Z

〈−F0, Z〉

s.t. −F∗(Z) + c = 0,
Z � 0.

(2.17)

We remark that keeping the structure of the problem may be beneficial, since the dual
of (2.8) is

max
Z

− TrZ

s.t. − ZAT −AZ + I = 0
Z � 0,

(2.18)

where the equality constraint uniquely determines Z, assuming that there exist no two
eigenvalues αi and αj of A such that αi + αj = 0 (Bartels and Stewart, 1972).

2.3.1 Duality Gap

Let us denote the value of the objective function of the dual problem (2.17) d and the
value of the primal problem (2.7) p for any feasible dual and primal points. Let us also
denote the optimal values of these problems d∗ and p∗, respectively. Then the important
inequality

d ≤ d∗ ≤ p∗ ≤ p (2.19)

holds.
The duality gap of an optimization problem is defined as p − d and gives an upper

bound of how far from the optimal value of the problem we are. We refer to p∗ − d∗ as
the optimal duality gap.

2.3.2 Strong and Weak Duality

An important property is that d∗ ≤ p∗. This holds for all optimization problems, not only
convex problems. If d∗ < p∗, we have what is called weak duality, i.e. the optimal value

2.4 Optimality Conditions 11

to the dual problem gives us a lower bound of the primal problem. If d∗ = p∗, we have
strong duality. This implies that if we solve the dual problem, we have the optimal value
of the primal problem too. We remark that convexity of the optimization problem is not
sufficient for strong duality to hold.

One condition that is sufficient for strong duality to hold for convex optimization
problems is Slater’s condition. Slater’s condition for our problem states that if there exist
a point x such that

F0 + F(x) = S

S � 0,
(2.20)

then strong duality holds.

2.4 Optimality Conditions

The Karush-Kuhn-Tucker conditions for problem (2.7) are

F0 + F(x) = S

−F∗(Z) + c = 0
ZS = 0
Z � 0
S � 0.

(2.21)

The solution of these conditions define the global optimum of problem (2.7), assuming
e.g. that Slater’s condition holds, and many algorithms for solving this problem can be
interpreted as methods for iteratively solving these conditions. We remark that all these
constraints are linear, and thus easy to cope with, except the constraint ZS = 0 which is
nonlinear and complicate the solution procedure. A naive approach can be to use Newtons
method and linearize the nonlinear constraint. Unfortunately, this will only allow for very
short steps to be taken, which will make the solution time very long.

A remedy to this is to relax the constraint ZS = 0 to ZS = τI , τ ≥ 0 which will
allow for longer steps and faster convergence. Points satisfying (2.21) with the relaxed
nonlinear constraint are said to be on the central path. We remark that as τ tends to zero,
the central path converges to a solution to the KKT conditions. Algorithms that find the
optimum by finding points on the central path are called path following algorithms.

An important concept is the duality measure ν, which is defined as

ν =
〈Z, S〉
n

, (2.22)

where the duality measure ν is the duality gap for feasible Z and S. We remark that for
points on the central path we have

ν =
〈Z, S〉
n

=
Tr τI
n

=
τn

n
= τ. (2.23)

12 2 Semidefinite Programming

2.5 Algorithm

This section will describe a simple algorithm for semidefinite programming. The algo-
rithm is a so called interior-point method. First, we state the algorithm, then the rest of
the section will explain the different steps involved.

Algorithm 2.1 Semidefinite programming algorithm

1: Preprocess
2: Form system of equations to solve for search directions
3: Solve for search directions Hx = b
4: Determine step size
5: if 〈Z,S〉n > tol then
6: Goto 2
7: end if
8: Postprocess

2.5.1 Linearization of the KKT Conditions

This section will describe how the equations for the search directions described in Algor-
tihm 2.1 are found. Let us start by linearizing the KKT conditions (2.21) with the relaxed
version of the condition ZS = τI . That yields, replacing x with x+ ∆x, S with S+ ∆S
and Z with Z + ∆Z,

F0 + F(x+ ∆x) = S + ∆S
−F∗(Z + ∆Z) + c = 0

∆Z∆S + ∆ZS + Z∆S + ZS = τI

Z + ∆Z � 0
S + ∆S � 0.

(2.24)

Now, let us collect all the ∆-terms on one side, and let us also ignore the nonlinear term
∆Z∆S, yielding

F(∆x)−∆S = S − F0 −F(x)
F∗(∆Z) = −F∗(Z) + c

∆ZS + Z∆S = τI − ZS
∆Z � −Z
∆S � −S.

(2.25)

Unfortunately, a symmetric solution to this system of equations are not guaranteed to
exist (Kojima et al., 1997). A remedy to this is to introduce a symmetry transformation

H(X) =
1
2

(
R−1XR+

(
R−1XR

)T)
. (2.26)

In (Zhang, 1998), it is shown that

ZS = τI ⇐⇒ H(ZX) = τI. (2.27)

2.5 Algorithm 13

Hence, we replace the last equality constraint with the symmetrized one, i.e.

H(∆ZS + Z∆S) = τI −H(ZS). (2.28)

Let us now summarize the equations we have, namely

F(∆x)−∆S = D1

F∗(∆Z) = D2

H(∆ZS + Z∆S) = D3,

(2.29)

for suitable D1, D2 and D3. In order for us to simplify this, we symmetric vectorize the
equations (2.29), and thus get a system of equations likeA −I 0

0 0 AT

0 F E

 ∆x
svec(∆S)
svec(∆Z)

 =

svec(D1)
svec(D2)
svec(D3)

 , (2.30)

where the operator svec(X) is defined in Definition 2.2, and where A ∈ Rn(n+1)m/2 is
the vectorization of the operator F(x), i.e.

A∆x = svec(F(∆x)). (2.31)

Furthermore, we have that F = R−1Z ⊗s R and E = R−1 ⊗s SR are the vectorizations
of the symmetric operator H(X). Using block elimination techniques, we can eliminate
∆S and ∆Z get the system of equations

−ATE−1FA∆x = D4, (2.32)

for a suitable choice of D4. Obviously, one needs to specify what the symmetry transfor-
mation matricesR are. Different choices ofR give different search directions. We remark
that there are several possible search directions, for example the AHO direction (Alizadeh
et al., 1998), the HKM direction (Helmberg et al., 1996, Kojima et al., 1997, Monteiro,
1997) and the Nestrov-Todd direction (Todd et al., 1998).

In the HKM-direction, the scaling matrix R is equal to S
1
2 . This simplifies the ex-

pression, such that we can write the equation system (2.32) as M∆x = D4 where each
element of M can be written as

Mij =
〈
Fi, ZFjS

−1
〉
. (2.33)

2.5.2 Computation of steplength

Once the search direction has been computed, the steplength needs to be decided. Differ-
ent approaches exist, such as exact line search and backtracking (Boyd and Vandenberghe,
2004). However, we present a third idea which utilizes the fact that the semidefinite con-
straints on S and Z can be computed, as described in the manual to SPDT3 (Tütüncü
et al., 2003).

Let us denote the current iterate Si and the next iterate Si+1, and we have found the
search direction ∆Si. Denote the steplength α. We require Si+1 to be positive semidefi-
nite, that is

Si+1 = Si + α∆Si � 0. (2.34)

14 2 Semidefinite Programming

It is not hard to show that the maximum steplength α we can choose is

αmax =

{
−1

λmin((Si)−1∆Si) if λmin is negative,

∞ otherwise.
(2.35)

Here we let λmin((Si)−1∆Si) denote the minimal eigenvalue of (Si)−1∆Si. Invertibility
of Si is guaranteed if Si is strictly feasible, and hence positive definite. The stepsize can
the be chosen as

α = min(1, γαmax), (2.36)

where γ is chosen to be a number slightly less than 1, say γ = 0.98. This steplength α is
then used to update xi and Si. A similar idea can be used to determine the steplength β
that is used to update Zi. Note here that it is not necessary to update the primal and dual
variables with the same steplength.

2.5.3 Pre- and postprocessing

The pre- and postprocessing steps can consist of different parts depending on the algo-
rithm, and will not be described in detail. We mention that preprocessing can for example
be detection of linear constraints and detecting that constraints are linearly dependent.
Also, choosing a starting point for the algorithm is included in the preprocessing.

3
Lagrangian Relaxation

Even though there exist efficient implementations of many classes of optimization prob-
lems, sometimes the optimization problems might be too large to solve, or the structure
of the problem allows for a faster solution time. This chapter discusses some methods
for doing this when the variables and constraints are such that if one, or possible several,
constraints contains the variables in a way such that if that constraint would not have been
present, the problem would decompose into several smaller problems. These constraints
are in the literature called complicating constraints.

3.1 Introduction

A decomposition method is a method that solves an optimization problem, not by iterat-
ing over the whole problem, but rather solving sub-problems instead. These ideas were
pioneered in the 1960s for linear systems by Dantzig and Wolfe (Dantzig and Wolfe,
1960) and Benders (Benders, 1962).

3.2 Complicating Constraints

This section will describe what a complicating constraint is. In loose terms, it is a con-
straint such that without it, the solution of the optimization problem would have been
much simpler to obtain. We will focus on the following optimization problem with com-
plicating constraints.

15

16 3 Lagrangian Relaxation

min
x

N∑
j=0

cTj x
j

s.t. F00 +
N∑
j=0

mj∑
i=1

F0ijx
j
i = S0 (3.1a)

Fj0 +
mj∑
i=0

Fkijx
j
i = Sk, k = 1, . . . , N (3.1b)

Sk � 0, k = 0, . . . , N.

In (3.1), the problem would have decomposed into N different optimization problems, if
the constraint (3.1a) had not been present. Various methods for overcoming this exists.
Most of them involve decomposition using the Lagrangian. In this chapter we will present
what is known as Lagrangian decomposition, but first we will show an abstraction to (3.1),
in order to streamline the presentation. Consider the following optimization problem.

min
X

N∑
i=0

〈fi, Xi〉

s.t. g(X) = gc +
N∑
i=0

gi(Xi) � 0 (3.2a)

hi(Xi) � 0, i = 1, . . . , N (3.2b)

where X = (X0, . . . , XN) and where gi(Xi) are linear matrix-valued functions and
hi(Xi) are affine matrix-valued functions. Let us also define the sets

Si = {Xi : hi(Xi) � 0} . (3.3)

We see that the optimization problems in (3.1) are a subset of the problems in (3.2). From
now on, we will discuss the optimization problem (3.2), but it is clear that everything we
say about it will also hold for the optimization problem (3.1).

3.3 Lagrangian with Respect to some Constraints

In this section, we will take the Lagrangian of problem (3.2) with respect to the com-
plicating constraint (3.2a) and let the domain of Xi be Si, as defined in (3.3). Then,
following (2.10), the Lagrange dual function to (3.2) is

g(Z) = inf
X0,Xi∈Si

L(X,Z) = inf
X0,Xi∈Si

N∑
i=0

〈fi, Xi〉+

〈
gc +

N∑
i=0

gi(Xi), Z

〉
. (3.4)

3.4 Subgradient method of Uzawa 17

For a fixed value of Z, the minimization of this can be formulated as

g(Z) = inf
X0,Xi∈Si

L(X,Z) =

inf
X0,Xi∈Si

{
〈X0, f0 + g∗0(Z)〉+ 〈Z, gc〉+

N∑
i=1

〈fi, Xi〉+ 〈g∗i (Z), Xi〉

}
. (3.5)

If we look at (3.5), we see that for fixed Z, the minimization of L(X,Z) is separable in
Xi. That is, we can do the minimization for each Xi independent of Xj , j 6= i. This fact
is used in many decomposition algorithms.

From (3.5), we can also deduce that we have no constraints on X0. Since L(X,Z)
linear in X0, we have that

f0 + g∗0(Z) = 0, (3.6)

is a necessary constraint in order for this minimum to be bounded. This is one of the
constraints of the dual problem (3.2). It is also possible that the minimization over Xi ∈
Si will not be bounded, but this will be discussed more in detail later on.

Keep in mind that the optimization problem that we are really interested in solving is

max
Z�0

min
X0,Xi∈Sn

L(X,Z). (3.7)

We remark here that there exist several techniques to tackle this problem. A good starting
point is (Lemaréchal, 2007). We will now present some of the methods that are available
in the literature in order for us to tackle the relaxed problem.

3.4 Subgradient method of Uzawa

Perhaps the first method that was suggested for this problem was the subgradient method
from 1958 by Uzawa in (Arrow et al., 1958). First, let us denote the partial derivatives of
L(X,Z) with respect to X and Z by LX(X,Z) and LZ(X,Z) respectively. Then, if we
allow Z and X to be updated according to

Xk+1 = ProjXk + τLX(Xk, Zk)
Zk+1 = ProjZk − τLZ(Xk, Zk),

(3.8)

where Proj means a projection such that Xk+1 and Zk+1 are their respective domains.
If certain conditions on L(X,Z) holds, then the system of equations will converge to the
optimal values of X and Z. We remark that the original algorithm was developed for
the case where the domain of X and Z was the positive real numbers, which made the
projection easy. We remark that if we want to use this method for the problem in (3.4),
we need to ensure that the constraint (3.6) holds.

In order for (3.8) to converge, the function L(X,Z) must be strictly convex in X
which rules out systems with linear dependence on X . Also, the stepsize τ > 0 must
satisfy certain technical conditions, i.e. it must be chosen ”small” enough.

There exist various tricks in order for this algorithm to converge even when L(X,Z)
is not strictly convex inX , such as adding a term ε 〈X,X〉 or making small modifications

18 3 Lagrangian Relaxation

to the constraints. In the original book (Arrow et al., 1958), Arrow and Hurwitz suggest
that the constraints should be transformed with a strictly increasing function ρ(z) such
that ρ(0) = 0. They suggest to use ρ(z) = 1 − e−ν with ν > 0. We remark that the
original work was done for the case when the constraints where not semidefinite.

3.5 Kelley-Cheney-Goldstein

Another approach to solving this problem is by a method of Kelley (Kelley, 1960) and
Cheney and Goldstein (Cheney and Goldstein, 1959). The idea is based on the fact that
for every feasible value of Z, say Zk, and corresponding minimizing Xk

i to (3.4), it holds
that

g(Zk)+

〈
Z − Zk, gc +

N∑
i=1

gi(Xk
i)

〉
=

N∑
i=1

〈
fi, X

k
i

〉
+

〈
Z, gc +

N∑
i=1

gi(Xk
i)

〉
, (3.9)

is a linear supporting function to h(Z) at Zk. A linear supporting function to h(Z) at Zk

is a linear function which never lies below h(Z) and contacts it at Zk. Hence, assuming
we have r values Zk and Xk

i , the function

vr = min
1≤k≤r

N∑
i=1

〈
fi, X

k
i

〉
+

〈
Z, gc +

N∑
i=1

gi(Xk
i)

〉
, (3.10)

is an approximation to h(Z). Hence, instead of maximizing h(Z) directly, the Kelley-
Cheney-Goldstein algorithm iterates between doing the minimizing with respect to Xi

in (3.4) and maximizing (3.10) with respect to Z. We remark that the maximization
of (3.10) is done by using the epigraph formulation, i.e. by solving the optimization prob-
lem

max
σ,Z

σ

s.t.
N∑
i=1

〈
fi, X

k
i

〉
+

〈
Z, gc +

N∑
i=1

gi(Xk
i)

〉
≥ σ

f0 + g∗0(Z) = 0
Z � 0.

(3.11)

The convergence of this method is in some cases very slow (Hiriart-Urruty and Lemaréchal,
1993).

3.6 Bundle methods

The bundle method is similar to the Kelley-Cheney-Goldstein method, but differs in that
an extra term is added in the objective function in order to penalize too big steps in Z. The
method basically works like this. Let us define Ẑ to be the previous value of Z that has

3.6 Bundle methods 19

given us the lowest value of the dual function. The optimization problem in the bundle
method is then

max
σ,Z

σ − µk
2

〈
Z − Ẑ, Z − Ẑ

〉
s.t.

N∑
i=1

〈
fi, X

k
i

〉
+

〈
Z, gc +

N∑
i=1

gi(Xk
i)

〉
≥ σ

f0 + g∗0(Z) = 0
Z � 0.

(3.12)

That is, the method penalizes deviations from the previously best value of Z. If we get a
better value of Z than Ẑ, that is, a value of Z that gives a higher value of g(Z), we set
Ẑ = Z.

4
Semidefinite Programming in
Systems and Control Theory

In this chapter, some applications of semidefinite programs to control theory related prob-
lems will be reviewed. An early reference, which contains a large number of collected
applications is (Boyd et al., 1994).

4.1 System considered

The system we consider in this chapter is an LTI system on state-space form. The system
is

ẋ(t) = Ax(t) +Bw(t)
z(t) = Cx(t) +Dw(t),

(4.1)

where x(t) ∈ Rnx , w(t) ∈ Rnw , z(t) ∈ Rnz and all matrices have suitable dimen-
sions for the multiplications to be defined. We assume that (A,B,C,D) is a minimal
realization.

We remark that methods similar to the ones we demonstrate in this chapter exist for
other types of models, such as linear fractional transformation (LFT), models with poly-
topic uncertainty and so on. Also, everything in this chapter is about continuous time
systems, but similar methods exist for discrete time systems.

4.2 Stability

The internal stability of system (4.1) is equivalent to the existence of P ∈ Sn such that

ATP + PA ≺ 0
P � 0.

(4.2)

21

22 4 Semidefinite Programming in Systems and Control Theory

This was shown in the 1890s by Lyapunov for an autonomous system (Boyd et al., 1994).
We remark that the stability of (4.1) can also be checked by computing the eigenvalues of
A.

4.3 H∞-norm

The H∞-norm of system (4.1) can be computed by solving the optimization problem

min
γ2,P

γ2

s.t.
[
ATP + PA+ CTC PB + CTD

BTP +DTC DTD − γ2I

]
� 0

P � 0,

(4.3)

where P ∈ Snx and γ2 ≥ 0 by construction. Assuming γ > 0, this can, by means of the
Schur complement, be reformulated as

min
γ,P̃

γ

s.t.

AT P̃ + P̃A P̃B CT

BT P̃ −γI DT

C D −γI

 � 0

P̃ � 0,

(4.4)

where P̃ = P
γ . Whichever formulation that is preferable depends on the situation.

In (4.4), the size of the basis matrices in (2.7) will be bigger than if (4.3) was used, but if a
more general problem was to be solved, the fact that the products CTC, CTD, DTC and
DTD don’t appear in (4.4) might be advantageous. We remark that theH∞-norm of (4.1)
can be found in other ways, for example by using a bisection algorithm or checking the
eigenvalues of a certain Hamiltonian matrix (Zhou et al., 1996, p. 115-116).

4.4 H2-norm

For the same system as in (4.1) with D = 0, the H2-norm can be found be solving the
following SDP.

min
X

TrX

s.t.
[
X C
CT W−1

]
� 0

AW +WAT +BBT = 0,

(4.5)

where W is the controllability Gramian of (4.1). We remark that one would solve the
Lyapunov equation in (4.5) first, and then solve the semidefinite program. After solving
the optimization problem, the squared H2-norm is then equal to TrX . We also remark
that the H2-norm can be directly computed from

√
CWCT (Zhou et al., 1996, p. 113).

Bibliography

F. Alizadeh, J.P.A. Haeberly, and M.L. Overton. Primal-dual interior-point methods for
semidefinite programming: convergence rates, stability and numerical results. SIAM
Journal on Optimization, 8(3):746–768, 1998.

K.J. Arrow, L. Hurwicz, and H. Uzawa. Studies in linear and non-linear programming.
Stanford University Press, 1958.

R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX + XB = C [f4].
Communications of the ACM, 15(9):820–826, 1972.

J.F. Benders. Partitioning methods for solving mixed variables programming problems.
Numerische Mathematik, 4:238–252, 1962.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system
and control theory, volume 15 of Studies in Applied Mathematics. SIAM, 1994. ISBN
0-89871-334-X.

S.P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

E.W. Cheney and A.A. Goldstein. Newton’s method for convex programming and
Tchebycheff approximation. Numerische Mathematik, 1(1):253–268, 1959.

G.B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
research, 8(1):101–111, 1960.

R. Falkeborn and A. Hansson. A decomposition algorithm for KYP-SDPs. In Proceedings
of the European Control Conference, pages 3202–3207, August 2009.

R. Falkeborn, J. Löfberg, and A. Hansson. Lowrank exploitation in semidefinite pro-
gramming for control. Technical Report LiTH-ISY-R-2927, Department of Electrical
Engineering, Linköping University, SE-581 83 Linköping, Sweden, January 2010.

23

24 Bibliography

C. Helmberg, F. Rendl, R.J. Vanderbei, and H. Wolkowicz. An interior-point method for
semidefinite programming. SIAM Journal on Optimization, 6:342–361, 1996.

J.B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms
II. Springer, 1993.

J.E. Kelley. The cutting plane method for solving convex programs. Journal of the SIAM,
8(4):703–712, 1960.

M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the monotone semidefinite
linear complementarity problem in symmetric matrices. SIAM Journal on Optimiza-
tion, 7:86, 1997.

C. Lemaréchal. The omnipresence of Lagrange. Annals of Operations Research, 153(1):
9–27, 2007.

Z. Liu and L. Vandenberghe. Low-rank structure in semidefinite programs derived from
the KYP lemma. In Proceedings of the 46th IEEE Conference on Decision and Control.
Citeseer, 2007.

J. Löfberg. YALMIP: a toolbox for modeling and optimization in MATLAB. Computer
Aided Control Systems Design, 2004 IEEE International Symposium on, pages 284–
289, 2004.

R.D.C. Monteiro. Primal–dual path-following algorithms for semidefinite programming.
SIAM Journal on Optimization, 7(3):663–678, 1997.

C. Papageorgiou, R. Falkeborn, and A. Hansson. Formulation of the stability margins
clearance criterion as a convex optimization problem. In Proceedings of the 6th IFAC
Symposium on Robust Control Design, 2009, pages 325–330, June 2009.

M.J. Todd, K.C. Toh, and R.H. Tutuncu. On the Nesterov-Todd direction in semidefinite
programming. SIAM Journal on Optimization, 8(3):769–796, 1998.

R.H. Tütüncü, K.C. Toh, and M.J. Todd. Solving semidefinite-quadratic-linear programs
using SDPT3. Mathematical Programming, 95(2):189–217, 2003.

L. Vandenberghe, V.R. Balakrishnan, R. Wallin, A. Hansson, and T. Roh. Interior-point
algorithms for semidefinite programming problems derived from the KYP lemma.
Positive Polynomials in Control, Lectures Notes in Control and Information Science.
Springer, 2004.

R. Wallin, C.-Y. Kao, and A. Hansson. A cutting plane method for solving KYP-SDPs.
Automatica, 44(2):418 – 429, 2008. ISSN 0005-1098.

R. Wallin, A. Hansson, and J. H. Johansson. A structure exploiting preprocessor for
semidefinite programs derived from the Kalman-Yakubovich-Popov lemma. IEEE
Transactions on Automatic Control, 54(4):697–704, April 2009. ISSN 0018-9286.
doi: 10.1109/TAC.2009.2014922.

H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of Semidefinite Programming:
Theory, Algorithms, and Applications. Kluwer Academic Publishers, 2000.

Bibliography 25

Y. Zhang. On extending some primal-dual interior-point algorithms from linear program-
ming to semidefinite programming. SIAM Journal on Optimization, 8(2):365–386,
1998.

K. Zhou, J. C. Doyle, and K. Glover. Robust and optimal control. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1996. ISBN 0-13-456567-3.

26 Bibliography

Part II

Publications

27

Paper A

A Decomposition Algorithm for
KYP-SDPs

Authors: Rikard Falkeborn and Anders Hansson

Published as

R. Falkeborn and A. Hansson. A decomposition algorithm for KYP-SDPs.
In Proceedings of the European Control Conference, pages 3202–3207, August
2009

29

A Decomposition Algorithm for KYP-SDPs

Rikard Falkeborn and Anders Hansson

Dept. of Electrical Engineering,
Linköping University,

SE–581 83 Linköping, Sweden

Abstract

In this paper, a structure exploiting algorithm for semidefinite programs de-
rived from the Kalman-Yakubovich-Popov lemma, where some of the con-
straints appear as complicating constraints is presented. A decomposition
algorithm is proposed, where the structure of the problem can be utilized. In
a numerical example, where a controller that minimizes the sum of the H2-
norm and the H∞-norm is designed, the algorithm is shown to be faster than
SeDuMi and the special purpose solver KYPD.

1 Introduction

Semidefinite programs (SDPs) arise in many applications in control and signal process-
ing (Boyd et al., 1994). In many cases, the programs that need to be solved involve large
matrix variables that can make the computational burden very large. In some cases, the
structure of the problem can be utilized to reduce the computational demands.

SDPs derived from the Kalman-Yakubovich-Popov lemma (KYP-SDPs) (Rantzer,
1996) is one such example, where tailor-made solvers have been successfully developed,
see for example (Wallin et al., 2009, 2008, Kao et al., 2004). In this paper an algorithm for
solving KYP-SDPs where some of the constraints appear as complicating constraints, i.e.
constraints which are such that the optimization program would have been much easier
to solve, if they were not present. More specifically, we treat optimization programs with
the following structure

min
xi,Pi

N∑
i=0

〈Ci, Pi〉+ cTi xi

s.t. F0(P0) +M0 + G(x) � 0
Fi(Pi) +Mi0 +Hi(xi) � 0, i = 1, . . . , N,

(1)

32 Paper A A Decomposition Algorithm for KYP-SDPs

whereCi, Pi ∈ Sni , and where Sn is the space of symmetric matrices of dimension n×n.
The inner product 〈Ci, Pi〉 is defined as TrCiPi. We define the operators

Fi(Pi) =
[
ATi Pi + PiAi PiBi

BTi Pi 0

]
, i = 0, . . . , N,

where Ai ∈ Rni×ni , Bi ∈ Rni×mi ,

Hi(xi) =
pi∑
j=1

Mijxij , i = 1, . . . , N,

where Mij ∈ Sni+mi , xi ∈ Rpi , and where xij denotes the jth component of the vector
xi. Let us also define the operators Gi(xi) =

∑pi

j=1 xijM0ij
, and G(x) =

∑N
i=0 Gi(xi)

where x = (x0, x1, . . . , xN).
We assume, that the pairs (Ai, Bi) are controllable. This implies that the operators

Fi(Pi) have full rank. This can be relaxed to stabilizability of the pair (Ai, Bi) provided
that the range of Ci is in the controllable subspace of (Ai, Bi), see (Wallin et al., 2009)
for details. We also assume the optimal value of (1) exists and is finite.

The constraint involving G(x) is a complicating constraint, since without it, the prob-
lem would decompose into several smaller problems, which all could be solved separately.
Hence, a decomposition algorithm would be suitable to use. We remark that the algorithm
we propose can easily be generalized to have several complicating constraints.

This type of programs appear for example in robust control analysis using integral
quadratic constraints (Megretski and Rantzer, 1997), and linear system design and analy-
sis (Hindi et al., 1998, Oishi and Balakrishnan, 1999).

We remark that a standard linear matrix inequality (LMI)

M = M0 +
n∑
k=1

xkMk � 0,

is a special case of a KYP-LMI with the size of A being 0 × 0. Hence we can handle a
mixture of KYP constraints and standard LMIs. In fact, as we will see in Section 3, in
some cases, where the complicating constraint is a regular LMI, the ability to solve the
regular LMI using a standard solver and use tailormade solvers for the KYP-constraints
can, as we will see, reduce the computational time.

1.1 Eliminating variables from KYP-SDPs

We here show how the structure of the KYP-SDP can be utilized to eliminate dual vari-
ables and thus formulate a smaller problem which can be solved in less time. The details
can be found in (Wallin et al., 2009). For simplicity, we only show how the elimina-
tion is done for the case with one KYP-constraint, but a generalization is straightforward.
Consider the problem

min
x,P
〈C,P 〉+ cTx

s.t. F(P) +M0 + G(x) � 0.
(2)

2 Lagrangian relaxation 33

The dual formulation of this problem is (Wallin et al., 2009)

max
Z
〈M0, Z〉

s.t. F∗(Z) + C = 0
G∗(Z) + c = 0

Z =
[
Z11 Z12

ZT12 Z22

]
� 0

(3)

where the adjoint operators F∗(Z) and G∗(Z) are defined as

F∗(Z) = AZ11 + Z11A
T +BZT12 + Z12B

T

G∗(Z) =

〈M1, Z〉
...

〈Mp, Z〉

 . (4)

By computing a basis for the nullspace of the adjoint operator F∗(Z), it is possible to
reduce the number of variables. In (Wallin et al., 2009) it is shown how such a basis can
be easily found by solving Lyapunov equations which can be done in an efficient and
numerically stable way (Bartels and Stewart, 1972).

When the reduction of variables is done, the reduced dual problem can be solved, and
when a solution is found, the original optimal variables can be computed, see (Wallin
et al., 2009) for details.

2 Lagrangian relaxation

Optimization programs with complicating constraints have been extensively studied within
the field of optimization and operations research and is usually tackled with different de-
composition algorithms. We will employ one of these, Lagrangian relaxation (Lemaréchal,
2001) pioneered in (Kelley, 1960, Cheney and Goldstein, 1959), and show how the spe-
cific structure of (1) can be used to speed up the computational time.

2.1 Forming the Lagrangian decomposes the problem

In order to make the presentation more streamlined, we derive the algorithm in a slightly
more general form than (1). Consider the problem

min
X

N∑
i=0

〈fi, Xi〉

s.t. g(X) = gc +
N∑
i=0

gi(Xi) � 0 (5a)

hi(Xi) � 0, i = 1, . . . , N, (5b)

where gi and hi are assumed to be symmetric linear matrix functions of X , and where fi
is assumed to be a symmetric matrix. We let Xi = (Pi, xi) and X = (X0, . . . , XN).

34 Paper A A Decomposition Algorithm for KYP-SDPs

The Lagrangian function to (5) with respect to the complicating constraint (5a) is
(Boyd and Vandenberghe, 2004)

L(X,Z) =
N∑
i=0

〈fi, Xi〉+

〈
Z, gc +

N∑
i=0

gi(Xi)

〉
. (6)

Hence, if we let Si = {Xi : hi(Xi) � 0}, the dual function to (5) is

h(Z) = min
X0,Xi∈Si

L(X,Z). (7)

For fixed Z, the minimization can be formulated as

min
X0,Xi∈Si

{
〈X0, f0 + g∗0(Z)〉+ 〈Z, gc〉+

N∑
i=1

〈fi, Xi〉+ 〈g∗i (Z), Xi〉

}
. (8)

where g∗i (Z) denotes the dual of gi(Xi). In order for the minimal value to be bounded
from below when minimizing L(X,Z) with respect to X0, we have to require that Z
fulfills the constraint

g∗0(Z) + f0 = 0. (9)

For the problem studied in this paper, this corresponds to

F∗0 (Z) + C0 = 0
G∗0 (Z) + c0 = 0,

(10)

where the adjoint operators F∗0 (Z) and G∗0 (Z) are defined as in (4). After minimizing
with respect to X0, we obtain, since we have required Z to fulfill the constraint (9),

h(Z) = min
X0,Xi∈Si

L(X0, . . . , XN , Z) =
N∑
i=1

min
Xi∈Si

〈fi + g∗i (Z), Xi〉 . (11)

Hence, for fixed Z, the problem of minimizing the Lagrangian under the constraints (5b)
is a separable problem in Xi = (Pi, xi) for i = 1, . . . , N . In our problem, each mini-
mization is equal to

min
xi,Pi

〈Ci, Pi〉+ c̄Ti xi

s.t. Fi(Pi) +Mi0 +Hi(xi) � 0,
(12)

where c̄ = ci + G∗i (Z).
We remark that h(Z) is less than or equal to

∑N
i=0 〈fi, Z〉 forZ � 0 which fulfills (9).

One should not solve the separable optimization programs as they stand, but use a
tailor-made solver for KYP-SDPs. We take the same approach as in (Wallin et al., 2009)
and eliminate variables in the dual problem as described in Section 1.1. Note that the
reduction of the dual variables for the ith subproblem can be reused if we need to solve
the same subproblem but for a different Z. This will be used in Section 2.2.

The boundedness of the subproblems (12) can be an issue and is ensured by bounding
the optimal value of (12), see Appendix. This is done in the numerical example we present
in Section 3.

2 Lagrangian relaxation 35

2.2 Updating Z

The dual function h(Z) is a lower bound on the optimal value of (5). We know that if
the problem is convex and Slaters condition (Boyd and Vandenberghe, 2004) holds, the
maximum of the dual function is equal to the optimal objective value of the optimization
problem. Hence, we want to maximize the dual function to get a good lower bound on
the optimal value. That is, we want to solve the optimization problem

max
Z

h(Z) = max
Z

min
X

L(X,Z). (13)

A problem is that we do not have an explicit expression for the dual function in (11) since
it depends on Xi.

Dual formulation

To be able to compute a lower bound on the optimal objective function, (Lasdon, 1970)
proposes a tangential approximation method, first outlined in (Geoffrion, 1970). We note
that, if we have solved the Lagrangian problem r times for r different fixed Zk satisfy-
ing (9), and then have r different solutions Xk

i , the functions

h(Zk) +

〈
Z − Zk, gc +

N∑
i=1

gi(Xk
i)

〉
=

N∑
i=1

〈
fi, X

k
i

〉
+

〈
Z, gc +

N∑
i=1

gi(Xk
i)

〉
,

(14)

are linear supporting functions to h(Z) at Zk. A linear supporting function to h(Z) at Zk

is a linear function which never lies below h(Z) and contacts it at Zk. We can therefore
use the piecewise linear function

vr(Z) = min
1≤k≤r

N∑
i=1

〈
fi, X

k
i

〉
+

〈
Z, gc +

N∑
i=1

gi(Xk
i)

〉
, (15)

as an approximation to h(Z). Instead of maximizing h(Z), we maximise the approxima-
tion vr. By using the epigraph formulation of (15), an equivalent problem is

max
σ,Z

σ

s.t.
N∑
i=1

〈
fi, X

k
i

〉
+

〈
Z, gc +

N∑
i=1

gi(Xk
i)

〉
≥ σ, k = 1, . . . , r

f∗0 + g∗0(Z) = 0
Z � 0.

(16)

Since it is not certain that the optimal value of (16) is bounded, it is necessary to add the
constraint

σ < σmax, (17)

36 Paper A A Decomposition Algorithm for KYP-SDPs

−8 −6 −4 −2 0 2 4 6 8
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

Z

h
(Z

)

Figure 1: Tangential approximation of h (Z).

in order to get a bounded optimal value. Here σmax is chosen such that σmax is larger
than the optimal value of the original problem. We remark that this value is unknown, and
one should pick a large value of σmax.

In Figure 1, tangential approximation of the concave function h(Z) is shown.
If h(Zr) = L(Xr

1 , . . . , X
r
N), we know that we have found the optimum. If not, we

can use the ”new” Zr+1 to solve the subproblems again and obtain a new Xr+1
i . In

practice, it is not possible to find the exact optimum due to numerics, and we have to
settle for when h(Zr)− L(Xr

1 , . . . , X
r
N) is less than ε. This implies that the duality gap

is ε or less.
An iterative procedure to solve the original problem (1) can be outlined as follows,

starting from iteration r.

1. Solve the problem (16), and obtain an optimal solution Zr+1.

2. Solve the subproblems (12) to obtain an optimal solution
(
Xr+1

0 , . . . , Xr+1
N

)
.

3. If |h(Zr+1)− L(Xr+1
0 , . . . , Xr+1

N)| < ε, terminate.

4. Add a linear constraint like in (16) and return to step 1.

Here we can note that σ is a non-increasing function in iterations r, but no such
guarantees can be given for L (Lasdon, 1970, p. 433).

2 Lagrangian relaxation 37

Utilizing the structure of Z

Solving the problem (16) as it stands is not a good idea. Instead, it is possible to refor-
mulate the optimization problem as an equivalent problem with fewer variables. We take
same approach as described in Section 1.1. However, note that the computation of the
basis can be reused in all iterations.

Primal formulation

It is also possible to formulate the dual of (16) and solve that problem instead. The dual
problem of (16) is, note that P ki and xki are fixed,

min
y,Q

cT0 y0 + 〈C0, Q〉+
r∑

k=1

N∑
i=1

(
cTi x

k
i +

〈
Ci, P

k
i

〉)
yk

s.t. F0(Q) + G0(y0) +M0

r∑
k=1

yk︸ ︷︷ ︸
=1

+
r∑

k=1

N∑
i=1

Gi(xki)yk � 0

r∑
k=1

yk = 1

yk ≥ 0, k = 1, . . . , r,

(18)

where y0 ∈ Rp0 , Q ∈ Sn0 , and where yi ∈ R, i = 1, . . . , r. The dual variable Z needed
in the next iteration can be returned by primal-dual solvers. In order to avoid the equality
constraint we can eliminate the ”last” variable yr and replace it with 1−

∑r−1
k=1 yk. Thus,

tailor-made solvers for KYP-problems (Wallin et al., 2009, 2008) can be used to solve the
problem.

Note that if a feasible point for iteration r is known, then a feasible point for r + 1
is also known (by letting yr+1 = 0). Hence, if the underlying solver uses a method
which requires a strictly feasibly point, the first phase where such a point is found can be
skipped. This might save some computational time.

In the first iterations of the algorithm, it is not certain that the LMI (18) is feasible
since there are only a few xki . This corresponds to the case where σ is unbounded from
above in (16). A remedy to this is to include the constraint (17) when formulating the
dual of (16). The dual is then

min
y,Q,w

wσmax + cTo y0 + 〈C0, Q〉+
r∑

k=1

N∑
i=1

(
cTi x

k
i +

〈
Ci, P

k
i

〉)
yk

s.t. F0(Q) + G0(y0) +M0

r∑
k=1

yk +
r∑

k=1

N∑
i=1

Gi(xki)yk � 0

r∑
k=1

yk + w = 1

yk ≥ 0, k = 1, . . . , r
w ≥ 0,

(19)

38 Paper A A Decomposition Algorithm for KYP-SDPs

which, if w = 0 is the same problem as (18). If w = 0 in the solution to (19), the
problem (18) is feasible. For numerical reasons, it is better to switch to solving (18) when
the optimal value of w is zero. We remark that for problems where n0 is small compared
to m0, that is, when the number of columns in A0 is small compared to the number of
columns in B0, it may be beneficial to solve the problem in (19) instead of its dual (16).
We also remark that one should bound the optimal value of the problem in (19) in the
same fashion as we show in the Appendix.

3 Numerical example

The efficiency of the algorithm is investigated in a numerical example borrowed from
(Oishi and Balakrishnan, 1999), see also (Hindi et al., 1998, Farhoodi and Beheshti,
2007), and it is compared to the generic solver SeDuMi 1.21, (Sturm, 1999), and the tailor-
made solver for KYP-problems, KYPD, version 1.2 (Wallin et al., 2009). All solvers were
interfaced via YALMIP version 3, release 20090505, (Löfberg, 2004).

Using the Youla parametrization (Boyd and Barratt, 1991), the set of all stable closed-
loop plants of a system can be written as

Gcl = T1 + T2QT3, (20)

where Ti are stable and depends on the system matrices and Q is an arbitrary stable func-
tion transfer matrix. The corresponding controller is then, assuming positive feedback

K = Q(I +GQ)−1. (21)

By restricting Q to lie in a finite-dimensional subspace in such a way that the parameters
enter linearly, i.e. Q = Q(θ) =

∑n
i=1Qiθi, convex constraints on the closed loop sys-

tem result in convex optimization problems where the optimum can be easily found by
polynomial time methods (Boyd and Vandenberghe, 2004).

In order to formulate constraints on the closed loop system as LMIs, it is necessary to
write (20) in state space form. It is also necessary that this state space realization has all θi
in the C and D matrix in order for the constraints to be convex. The realization of (20) is
typically obtained using system Kronecker products (Khargonekar and Rotea, 1991, Hindi
et al., 1998) and yields a system of a much higher order than the original plant order. The
resulting closed loop system matrices can then be written as A, B, C(θ) and D(θ) where
C(θ) andD(θ) depends affinely on the parameters chosen in the parametrization ofQ(θ).

Many design specifications can be cast as LMIs. We can mention for example spec-
ifications and constraints on the H2-norm, H∞-norm, dispassivity constraints and the
location of the closed loop poles. Some of these are in the form of KYP-SPDs. As an
example, we will solve the joint minimization of the H2-norm and the H∞-norm of a
system (Hindi et al., 1998, Oishi and Balakrishnan, 1999). The design problem results in
the optimization problem

min
γ2,X,θ,P

TrX + γ2 (22a)

s.t.
[

X C(θ)W
1
2

W
1
2C(θ)T I

]
� 0 (22b)

3 Numerical example 39

ATP + PA PB 0
BTP 0 0

0 0 0

+

 0 0 C(θ)T

0 −γ2I D(θ)T

C(θ) D(θ) −I

 � 0, (22c)

where X and P are symmetric positive definite matrices, A, B, C(θ) and D(θ) are the
state space matrices of the closed loop system, W is the controllability gramian of the
system, i.e. W solves

AW +WAT +BBT = 0. (23)

This problem can be transformed to the form (1) where the complicating constraint is (22b)
since without it, tailor-made solvers for KYP-problems that use the dual formulation could
solve the problem. However, formulating the dual of the entire problem would create a
very large matrix variable corresponding to the LMI (22b). Hence, using a decomposition
algorithm that alternates between solving the KYP-SDP in it’s dual form, after eliminat-
ing variables and solving theH2-LMI (22b) in it’s primal form with much fewer variables
than the dual form will lower the computational burden.

To test the algorithm, we create random systems using rss in Matlab with one input
and one output. We chose the Youla parameter Q(θ) to be

Q(θ) =
nQ∑
i=0

θi

(s+ 0.5)i
, (24)

as suggested in (Boyd and Barratt, 1991). We choose to have nQ = 10 in all examples.
The reason for letting nQ = 10 is seen in Figure 2, where the normalized objective
value is plotted for 10 different systems of state dimension 20 with increasing nQ. The
computations were done using SeDuMi, i.e. no decomposition was used. We stopped
the increase in nQ when the objective function was not improving more than 0.1% or if
SeDuMi ran into numerical problems that were too severe.

We solve the resulting LMIs using our algorithm, the tailor-made solver KYPD calling
SeDuMi and the generic solver SeDuMi. All computations were terminated when the
absolute error or the relative error was less than 10−3. We create 10 different systems for
each n, where n is the number of states, and let n vary. The number nQ was set to 10
for all computations. The computational times were averaged and the averaged times can
be seen in Figure 3. We remark that in practice, n would include both the states of the
original plant as well as states from various weighting filters that is commonly used in
H∞-synthesis. We also remark that the number n in Figure 3 is the number of states in
the original plant, not the dimension of the A-matrix in (1). As an example, for n = 20,
the A-matrix is has 90 rows and columns.

In Figure 3 we see that the decomposition algorithm in this case outperforms both
the tailormade solver KYPD and the generic solver SeDuMi. It can also be seen that
the tailormade solver for KYP-problems actually performs worse than the generic solver
SeDuMi. This can be explained as follows. SeDuMi solves an optimization problem
where the majority of variables come from P which is n × n and therefore yield (n2 +
n)/2 variables assuming the order of Q(θ) and the number of variables in X , which
is determined by the number of outputs, can be neglected. KYPD formulates the dual
problem and eliminates variables. For a constraint of the type

F(P) +M0 + G(x) � 0, (25)

40 Paper A A Decomposition Algorithm for KYP-SDPs

1 2 3 4 5 6 7 8 9 10 11
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nQ

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
ti

on

Figure 2: Normalized objective values for different sizes of Q(θ).

the number of remaining dual variables, after the reduction, is mn+m (m+ 1) /2 where
m is the number of rows in the B matrix. This is usually a lot lower than

(
n2 + n

)
/2.

However, for this numerical example, we also have the constraint (22b). When we for-
mulate the dual problem of the numerical example, there will be a dual variable Z2 corre-
sponding the LMI (22b). This variable has no special structure that is used in KYPD, and
no variables will be reduced, adding an extra matrix variable with

(
(n+ p)2 + n+ p

)
/2

scalar variables, where p is the number of outputs to the system. This is even more vari-
ables than the original primal formulation, and hence KYPD will usually be slower than
SeDuMi for this specific example.

4 Conclusions

In this paper, a structure exploiting algorithm for KYP-SDPs where some of the con-
straints appear as complicating constraints is proposed. The structure of the KYP-SDP is
utilized to reduce the computational complexity. The algorithm is basically the Kelley-
Cheney-Goldstein cutting plane method (Kelley, 1960, Cheney and Goldstein, 1959). The
convergence of the method is established if the technical but important condition that Zk
is bounded holds, see for example (Lemaréchal, 2001). A sufficient condition for this is
that there exist an interior point for the problem (19) (Wolkowicz et al., 2000, Thm. 4.1.3).

References 41

0 5 10 15 20 25 30
10

−1

10
0

10
1

10
2

10
3

10
4

Decomposition
KYPD
SeDuMi

n

t
[s

]

Figure 3: Averaged computational times for the controller synthesis problem of
SISO systems. Note that n denotes the number of states in the original plant and not
the size of the matrices that are involved in the actual computations.

That this is indeed the case for all possible problems is still an open question. However,
our experience is that we have had no problems with convergence using the algorithm.

We remark that the worst case complexity of the number of iterates is proportional to
O(1/εm) where m is the dimension of the dual variable, which is very poor.

In a numerical example, it is shown that it is beneficial to use the proposed algorithm in
some cases. It is advantageous to use the algorithm in cases where one or more constraints
is associated with a large dual variable that has no specific structure that can be exploited.

References

R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX + XB = C [f4].
Communications of the ACM, 15(9):820–826, 1972.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system
and control theory, volume 15 of Studies in Applied Mathematics. SIAM, 1994. ISBN
0-89871-334-X.

S.P. Boyd and C.H. Barratt. Linear controller design: limits of performance. Englewood
Cliffs, NJ: Prentice Hall, 1991.

42 Paper A A Decomposition Algorithm for KYP-SDPs

S.P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

E.W. Cheney and A.A. Goldstein. Newton’s method for convex programming and
Tchebycheff approximation. Numerische Mathematik, 1(1):253–268, 1959.

M. Farhoodi and M.T.H. Beheshti. A case study of the multiobjective H2/H∞ control via
finite dimensional youla parameterization and LMI optimization. Industrial Electronics
Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE, pages 493–497,
2007.

A. M. Geoffrion. Primal resource-directive approaches for optimizing nonlinear decom-
posable systems. Operations Research, 18(3):375–403, may 1970. ISSN 0030-364X.

H.A. Hindi, B. Hassibi, and S.P. Boyd. Multiobjective H2/H∞-optimal controlvia fi-
nite dimensional Q-parametrization and linear matrix inequalities. American Control
Conference, 1998. Proceedings of the 1998, 5, 1998.

C.-Y. Kao, A. Megretski, and U. Jönsson. Specialized fast algorithms for IQC feasibility
and optimization problems. Automatica, 40(2):239 – 252, 2004. ISSN 0005-1098.

J.E. Kelley. The cutting plane method for solving convex programs. Journal of the SIAM,
8(4):703–712, 1960.

P. Khargonekar and M Rotea. Multiple objective optimal control of linear systems: the
quadratic norm case. Automatic Control, IEEE Transactions on, 36(1):14–24, 1991.

L. S. Lasdon. Optimization Theory for Large Systems. MacMillan Series in Operations
Research. MacMillan Publishing, 1970.

C. Lemaréchal. Lagrangian relaxation. In M. Jünger and D. Nadded, editors, Compu-
tational Combinatorial Optimization, pages 112 – 156. Springer Verlag, Heidelberg,
2001.

J. Löfberg. YALMIP: a toolbox for modeling and optimization in MATLAB. Computer
Aided Control Systems Design, 2004 IEEE International Symposium on, pages 284–
289, 2004.

A. Megretski and A. Rantzer. System analysis via integral quadratic constraints. IEEE
Transactions on Automatic Control, 42(6):819 – 830, 1997. ISSN 0018-9286.

J. Oishi and V. Balakrishnan. Linear controller design for the NEC laser bonder via LMI
optimization. Advances in Linear Matrix Inequality Methods in Control, Advances in
Control and Design. SIAM, 1999.

A. Rantzer. On the Kalman-Yakubovich-Popov lemma. Systems and Control Letters, 28
(1):7 – 10, 1996. ISSN 0167-6911.

J.F. Sturm. Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11(1):625–653, 1999.

A Appendix 43

R. Wallin, C.-Y. Kao, and A. Hansson. A cutting plane method for solving KYP-SDPs.
Automatica, 44(2):418 – 429, 2008. ISSN 0005-1098.

R. Wallin, A. Hansson, and J. H. Johansson. A structure exploiting preprocessor for
semidefinite programs derived from the Kalman-Yakubovich-Popov lemma. IEEE
Transactions on Automatic Control, 54(4):697–704, April 2009. ISSN 0018-9286.
doi: 10.1109/TAC.2009.2014922.

H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of Semidefinite Programming:
Theory, Algorithms, and Applications. Kluwer Academic Publishers, 2000.

A Appendix

Each of the subproblems in (12) are on the form

min
x,P
〈C,P 〉+ cTx

s.t. F(P) +M0 + G(x) � 0.
(26)

One way to make this optimization problem bounded is to add the constraint

〈C,P 〉+ cTx− fmin ≥ 0. (27)

The dual of (26) with the extra constraint (27) is

max
λ,z
〈Mo, Z〉 − fminλ

s.t. F∗(Z) + C(1 + λ) = 0
G∗(Z) + c(1 + λ) = 0
Z � 0
λ ≤ 0.

(28)

We can eliminate some of the dual variablesZ using the constraintF∗ (Z)+C(1+λ) = 0
in a very similar way as was done in (Wallin et al., 2009). In (Wallin et al., 2009), the
number of variables in Z is reduced by finding a basis for the nullspace of F∗ (Z) +C =
0. The only difference is that we have the term C(1 + λ) instead of C. Hence the only
difference compared to (Wallin et al., 2009) is that we need to find a solution to the
Lyapunov equation

AF0 + F0A
T + C(1 + λ) = 0, (29)

where λ is a variable. A solution to this is F0 = Fc(1 +λ) where Fc solves the Lyapunov
equation

AFc + FcA
T + C = 0. (30)

44 Paper A A Decomposition Algorithm for KYP-SDPs

To see this, just insert F0 in (29) and we get

AF0 + F0A
T + C(1 + λ) =

AFc(1 + λ) + (1 + λ)FcAT + C(1 + λ) =

AFc + FcA
T + C︸ ︷︷ ︸

=0

+λ

AFc + FcA
T + C︸ ︷︷ ︸

=0

 = 0.

(31)

Having this basis we can solve the dual problem using the reduced dual variables. The
reconstruction of P and x is not affected by this and can be found in the exact same
fashion as in (Wallin et al., 2009).

Paper B

Lowrank exploitation in semidefinite
programming for control

Authors: Rikard Falkeborn, Johan Löfberg and Anders Hansson

Published as

R. Falkeborn, J. Löfberg, and A. Hansson. Lowrank exploitation in semidef-
inite programming for control. Technical Report LiTH-ISY-R-2927, Depart-
ment of Electrical Engineering, Linköping University, SE-581 83 Linköping,
Sweden, January 2010

45

Lowrank exploitation in semidefinite
programming for control

Rikard Falkeborn, Johan Löfberg and Anders Hansson

Dept. of Electrical Engineering,
Linköping University,

SE–581 83 Linköping, Sweden

Abstract

Many control related problems can be cast as semidefinite programs but, even
though there exist polynomial time algorithms and good publicly available
solvers, the time it takes to solve these problems can be long. Something
many of these problems have in common, is that some of the variables enter
as matrix valued variables. This leads to a low-rank structure in the basis
matrices which can be exploited when forming the Newton equations. In
this paper, we describe the how this can be done, and show how our code
can be used when using SDPT3. The idea behind this is old and is imple-
mented in LMI Lab, but we show that when using a modern algorithm, the
computational time can be reduced. Finally, we describe how the modeling
language YALMIP is changed in such a way that our code can be interfaced
using standard YALMIP commands, which greatly simplifies for the user.

1 Introduction

Semidefinite programming (SDP) (Wolkowicz et al., 2000) has gained a lot of interest
within the control community, and is now a well established mathematical tool in the field.
Many fundamental control problems can be cast as semidefinite programs (Boyd et al.,
1994), for example proving robust stability (Gahinet et al., 1996, Iwasaki and Shibata,
2001, Megretski and Rantzer, 1997).

Moreover, since the beginning of the 90s, there exist efficient algorithms to solve these
SDPs in a time which is polynomial in the number of variables and constraints (Nesterov
and Nemirovsky, 1994). Today, there are several solvers freely available, such as Se-
DuMi (Sturm, 1999), SDPT3 (Tütüncü et al., 2003) and SDPA (Yamashita et al., 2003)
just to mention a few.

47

48 Paper B Lowrank exploitation in semidefinite programming for control

Although SDPs can be solved in polynomial time, the number of variables in the
problems often grow rapidly and the time needed to solve the problems can be substan-
tial, even though the plant size is modest. Because of this fact, tailor-made solvers for
various types of problems have been developed, for example for programs derived from
the Kalman-Yakubovic-Popov lemma (Wallin et al., 2008, 2009, Kao et al., 2004, Liu and
Vandenberghe, 2007, Vandenberghe et al., 2004).

However, a problem with these tailor-made solvers is that they often are limited to
very particular control problems, thus making them non-applicable for more complex
problems where only some part of the problem specification happens to have the structure
that can be exploited. Additionally, these efficient solvers are typically hard to hook up
to easily used modeling languages, such as YALMIP (Löfberg, 2004), which ultimately
means that few users actually will benefit from them.

This paper describes the implementation of a structure exploiting assembler for the
Schur complement matrix that can be used in for example SDPT3. The assembler utilizes
the fact that many problems in systems and control theory have matrix valued variables
which lead to low rank structure in the basis matrices. Additionally, we present a new
version of YALMIP which will allow the user to describe control problems in a very
natural standard YALMIP format, and take care of the intricate communication between
SDPT3 and the structure exploiting code.

To be fair, it should be pointed out that the theoretical idea exploited in this paper was
incorporated already in LMI Lab (Gahinet et al., 1995), which was one of the first public
implementations of an SDP solver, tailored specifically for control problems. However,
many years of active research in the SDP field has led to much more efficient algorithms,
and it is our goal to leverage on this. A major reason for pursuing the idea in this paper
is that it is slightly embarrassing for people coming from the SDP field, that the now over
15 year old LMI Lab solver actually outperforms state-of-the-art general purpose SDP
solvers on small- to medium-scale control problems.

The notation is standard. We let A � B(A � B) denote that A − B is positive
(semi)definite, Rn denotes the set of real vectors of dimension n and Sm denotes the set
of real symmetric matrices of dimension m. The inner product is denoted by 〈A,B〉 and
is for matrices defined as Tr

(
ATB

)

2 Semidefinite programming

A semidefinite program can be written as

min
x

cTx

s.t F0 +
n∑
i=1

Fixi = X

X � 0,

(1)

2 Semidefinite programming 49

where c, x ∈ Rn and X,Fi ∈ Sm. For future reference, let us also state the dual of this
problem. The dual of (1) is

max
Z

〈F0, Z〉

s.t ci + 〈Fi, Z〉 = 0, i = 1, . . . , n
Z � 0,

(2)

where Z ∈ Sm.
Almost all modern SDP-solvers today are using interior-point methods. That means,

in loose terms, we are solving both the primal and the dual problem at the same time.
The main parts of these algorithms consist of forming a system of equations to solve for
the search directions needed, solve that system of equations and then do a line search in
order to find out the appropriate step size. This procedure is then repeated until a stopping
criterion is fulfilled. This stopping criterion may for example be that we are sufficiently
close to the optimum.

We remark that forming the system of equations can be computationally expensive,
and is in some cases by far the most time-consuming part of the algorithm.

If we let the system of equations to be solved in order to get the search directions be

H∆x = b, (3)

where H is the coefficient matrix, which is usually symmetric and ∆x is the search di-
rection, the elements are given by Hij = 〈Fi, UFjV 〉 when using the Helmberg-Kojima-
Monteiro (HKM) direction (Helmberg et al., 1996, Kojima et al., 1997, Monteiro, 1997),
and byHij = 〈Fi,WFjW 〉when using the Nesterov-Todd direction (Nesterov and Todd,
1997). Here, Hij denotes the ijth element of the matrix H , and U , V and W are scaling
matrices.

In SDP programs encountered in systems and control, the majority of variables xi
in (1) do not come from scalar entities but rather as parts of a matrix variable. However,
there is no way to inform any of the public solvers about this fact. Instead, we will use an
approach where we supply the solver with the code to assemble the Hessian.

To illustrate this, let us take the Lyapunov inequality as an example. The Lyapunov
inequality is

ATP + PA+Q � 0, (4)

with Q � 0. In order to put this inequality on the form (1), which is used by most solvers
today, we let F0 = −Q, Fi = −ATEi − EiA where E1, . . . , Em is a basis for Sn,
m = n (n+ 1) /2. However, by doing so, we lose a lot of information that can be used in
the formulation of the Schur matrix.

The fact that we can choose Ei as any basis for Sn can be exploited. This means we
can chooseEi = eke

T
l +eleTk , if the variable xi is an off-diagonal element andEi = eke

T
k

if xi is an element on the diagonal, where ei is a unit vector in Rn. Now, let us compute
one element of the resulting Schur matrix for the Lyapunov inequality (4), assuming the

50 Paper B Lowrank exploitation in semidefinite programming for control

HKM direction is used. This can be done by

Hop =
〈
AT
(
eie

T
j + eje

T
i

)
+
(
eie

T
j + eje

T
i

)
A,

U
(
AT
(
eke

T
l + ele

T
k

)
+
(
eke

T
l + ele

T
k

)
A
)
V
〉

=

eTkAUA
T eie

T
j V el + eTkAUA

T eje
T
i V el+

eTl AUA
T eie

T
j V ek + eTl AUA

T eje
T
i V ek+

eTkAUeie
T
j AV el + eTkAUeje

T
i AV el+

eTl AUeie
T
j AV ek + eTl AUeje

T
i AV ek+

eTi AUele
T
kAV ej + eTj AUele

T
kAV ei+

eTi AUeke
T
l AV ej + eTj AUeke

T
l AV ei+

eTl Ueie
T
j AV A

T ej + eTl Ueje
T
i AV A

T ek+

eTk Ueie
T
j AV A

T el + eTk Ueje
T
i AV A

T el.

(5)

Since eTi Bej is just the ijth element of B, the element Hop is just a sum of products of
elements from the matrices AUAT , AU , AV AT , AV , U and V . Moreover, the matrices
involved are the same for all the positions in the Schur matrix. Hence they can be precom-
puted once in each iteration. This is the structure exploiting idea that was incorporated
already in LMI Lab for a projective method. The reason they could exploit it, while mod-
ern general purpose solvers fail to, is that the user has to specify the matrices and their
position in the constraints in a very detailed, by many regarded cumbersome, fashion.

In this paper we present an extension to the modeling language YALMIP which al-
lows the user to utilize this structure for interior-point methods using the semidefinite
programming solver SDPT3 (Tütüncü et al., 2003).

We remark that this is not limited to symmetric matrix variables and a single Lyapunov
inequality, but more general constraints and variables can be used, as will be described in
the following section.

3 SDPs considered

In the paper, we consider SDPs where the constraints are on the following form.

Nim∑
i=1

Njm∑
j=1

LijmPjR
T
ijm +RijmP

T
j L

T
ijm +

Nim∑
i=1

Njm∑
j=1

ATijmPjAijm +M0m+

p∑
k=1

Mkmxk � 0, m = 1, . . . , N (6)

where Pj and xk are the optimization variables, and where all the matrices are assumed
to have suitable dimensions.

We assume the basis matrices for Pj can be written as

Ej =
αj∑
h=1

εhjδ
T
hj , (7)

4 Implementation 51

where εhj and δhj are assumed to be unit vectors in appropriate vector spaces.
This implies that Pj can be a symmetric matrix, rectangular matrix, matrix with block

diagonal structure, tridiagonal structure, skew-symmetric and many more. We assume
Mkm has no exploitable structure.

For easier presentation, we will drop the indecesm, i.e. the indeces that indicate which
constraint the matrices belong to.

We now show what the elements in the Schur matrix with respect to the j1th and j2th
elements in Pj are, for the first term in (6). The corresponding element in the Schur matrix
is

Hj1j2 =

〈
Lj1

αj1∑
h=1

εhj1δ
T
hj1R

T
j1 , ULj2

αj2∑
h=1

εhj2δ
T
hj2R

T
j2V

〉
=

αj1∑
h=1

αj2∑
h=1

δThj1R
T
j1ULj2εhj2δ

T
hj2R

T
j2V Lj1εhj1 . (8)

It is clear that the for the other terms in (6), the expression will be similar. As an example,
for the second term in (6), just interchange Lj and Rj , and εhj and δhj . We remark that
the entry in the Schur matrix for the jth element in Pj , with respect to the first term in (6)
and xk can be written as

Hjk =

〈
Lj

aj∑
h=1

εhjδ
T
hjR

T
j , UMkV

〉
=

aj∑
h=1

〈
δTj R

T
j UMkV Liεj

〉
. (9)

Also in this case, the contribution from the other terms in (6) is very similar. It is obvious
from the discussion in the previous section what matrices to precompute and that this will
speed up the computations. Finally, we remark that for the unstructured matrices,Mk, the
entry in the Schur matrix will be

Hk1k2 = 〈Mk1 , UMk2V 〉 , (10)

just as it is implemented in SDPT3.
As a last remark in this section, we mention that since sparsity in the basis matrices

in (10) is exploited by solvers, the more sparsity in the basis matrices, the faster will the
computations in (10) be. We also see that the computations in (8) will not be affected by
sparsity in the basis matrices. Hence, the more full the basis matrices are, the better it will
be to use (8) in order to assemble the Schur matrix. We also mention that a continuous
time Lyapunov inequality, where the basis matrices have the form ATEi + EiA will
be relatively sparse, will have roughly 4n out of n2 elements that are non-zero, while a
discrete time Lyapunov inequality, where the basis matrices are on the form ATEiA−Ei
will have all n2 elements full, unless of there is some sparsity in A, which indicates that
the proposed method will be relatively better for discrete time systems than continuous
time systems.

4 Implementation

The solver SDPT3 allows for the user to provide the solver with a function that handles
the assembly of the Schur matrix. We have written a function that computes the Schur

52 Paper B Lowrank exploitation in semidefinite programming for control

matrix as described in Section 3. As input, the function takes the matrices Rijk, Lijk,
Aijk, M0k, Mijk from (6) and information about the basis matrices in (7). The com-
putations of the elements in the matrix H in (8) are done using mex-files for increased
performance. We remark that the case where we compute the element in H where we
have two unstructured matrices as in (10), we use the built in function in SDPT3. To
specify all these arguments can be cumbersome, but if YALMIP is used, the user does
not have to care about specifying any of the low-level input arguments, since this is done
automatically by YALMIP, as will be described in the next section.

5 Improvement of the YALMIP language

One of the most important steps is to make the whole framework easily accessible to the
casual user. An efficient solver with a cumbersome interface will have little impact in
practice. A first step towards incorporation of an efficient structure-exploiting solver for
control was the YALMIP interface to the solver KYPD (Wallin et al., 2008). Although
this interface allowed users to describe problems to KYPD in a fairly straightforward
fashion, it still required special-purpose commands specific to this solver. The reason for
this is that the core idea in YALMIP is that all expressions are evaluated on the fly, and
only the basis-matrices and decision variables are kept. In other words, all expressions
are immediately disaggregated and knowledge of underlying matrix variables is lost.

To circumvent this, a new version of YALMIP has been developed. To be able to
use the efficient solver described in this paper, it is essential that YALMIP keeps track
of aggregated matrix variables. Hence, when an expression is evaluated, YALMIP saves
information internally about the factors that constitute the constraints, essentially corre-
sponding to the matrices L and R in (6). These factors are also tracked when some basic
operations are performed, such as concatenation, addition, subtraction and multiplication.
The factors are however not guaranteed to be kept in highly complex manipulations. If we
use an operator for which the factor-tracking not is supported, the expression will be dis-
aggregated, and constraints involving this expression will be handled as a standard SDP
constraint by the solver.

To summarize, for the user, standard YALMIP code applies and nothing has changed,
the only difference is that in some problems structure will automatically be detected and
exploited. As an example, the example described in the following section would be coded
as

P = sdpvar(n);
x = sdpvar(nx,1);
M = M0+x(1)*M1+x(2)*M2+x(3)*M3
F = [A’*P+P*A P*B;B’*P zeros(m)]+M > 0
O = trace(C*P)+c’*x

Knowledge about the way the matrix variable P enters the problem will be tracked by
YALMIP and exploited.

6 Computational Results 53

6 Computational Results

In this section, we give some computational results that demonstrates that in some cases,
it is advantageous to use this way of computing the Schur matrix. The first example is on
the following form and is taken from (Johansson and Hansson, To appear). The SDPs we
solve have the following structure

min
x,P

〈C,P 〉+ cTx

s.t
[
ATi P + PAi PBi

BTi P 0

]
+

Mi,0 +
nx∑
k=1

xkMi,k � 0, i = 1, . . . , ni

(11)

where the decision variables are P ∈ Sn and x ∈ Rnx . All data matrices were generated
randomly, but certain care was taken in order for the optimization problems to be feasible.
See (Johansson and Hansson, To appear) for the exact details on how the matrices were
generated. This type of LMIs appear in a vast number of analysis problems for linear
differential inclusions (Boyd et al., 1994).

The optimization problem (11) can easily be put on the form (6) with

Li =
[
ATi
BTi

]
, Ri =

[
I
0

]
. (12)

We solve the problem (11) for increasing numbers of states n. We keep ni = 3 and
nx = 3 constant for all the problems. The problem was solved for 10 times for each n
and the average solution times are plotted in Figure 1.

As can be seen in Figure 1, the solution times decrease if we use the tailor made code
for the Schur compilation.

We also give a second, slightly more complicated example. The example is a model
reduction algorithm from (Helmersson, 1994) where semidefinite programming is used
to reduce the order of a linear time-invariant (LTI) system. A short description of the
algorithm now follows.

It is well known that the H∞-norm γ of an LTI system can be computed as

min
γ,P

γ (13)ATP + PA PB C
BTP −γI D
CT DT −γI

 ≺ 0, (14)

We also know that the difference of two systems G̃ = G−Ĝ can be written on state space
form with the matrices, where (Ã, B̃, C̃, D̃) are the state-space matrices of a realization
of G̃, and analogously with G and Ĝ,

[
Ã B̃

C̃ D̃

]
=

 A 0 B

0 Â B̂

C −Ĉ D − D̂

 . (15)

54 Paper B Lowrank exploitation in semidefinite programming for control

10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

10
3

10
4

LMI Lab

SDPT3

SDPT3−schur

SeDuMi

n

t
[s

]

Figure 1: Averaged computational times.

Now, using G̃ in (13), and by partitioning the matrix P into[
P11 P12

PT12 P22

]
� 0, (16)

and using this in (13), we get,

min
Â,B̂,Ĉ,D̂,P11,P12,P22,γ

γ
ATP + PA ATP12 + P12Â P11B − P12B̂ CT

ÂTPT12 + PT12A ÂTP22 + P22Â PT12B − P22B̂ ĈT

BTP11 − B̂TPT12 BTP12 − B̂TP22 −γI DT − D̂T

C Ĉ D − D̂ −γI

 ≺ 0.
(17)

Since this is a bilinear matrix inequality (BMI), the approach taken in (Helmersson,
1994) is to fix some matrices to be constant to make it an LMI, solve that optimization
problem, and then fix other matrices. This is best described in the following algorithm
from (Helmersson, 1994).

i Start with a Ĝ obtained from, for example a truncated balanced realization

ii Solve (17) subject to (16) with respect to (P, Ĉ, D̂), keeping (Â, B̂) constant.

7 Conclusions 55

iii Solve (17) subject to (16) with respect to (P11, Â, B̂, Ĉ, D̂), keeping (P12, P22)
constant.

iv Repeat ii and iii until some given convergence criteria is met.

We remark that this procedure does not guarantee global convergence.
Our numerical experience with this algorithm indicates that the numerical properties

of the LMIs we need to solve is improved if we let (A,B,C,D) be a balanced realization
of G.

We test the algorithm using using SDPT3 both with and without our special purpose
Schur-compiler. The systems we test it on are from the Compleib library (Leibfritz, 2003).
We remark that for the H∞-norm to be well defined, the systems must be stable, i.e. all
eigenvalues must have strictly negative real parts. Unfortunately, this is not the case for
most of the models in the Compleib library. In an attempt to increase the number of
models we can use, we shift the spectrum of the A-matrices in some models such that no
eigenvalue have larger real part than−1. Results of this is summarized in Table 1. As can
be seen in the table, the computational times can be reduced by the use of our code.

Table 1: Comparisson of times. Here, nx is the number of states in the original
model, nred is the number of states in the reduced system, nu is the number of inputs,
ny is the number of outputs, tSTRUL and tSDPT3 is the time used by SDPT3 with and
without the Schur-compiler. The time is for doing one round of iterations in the
algorithm outlined above. The models LAH and JE1 are used without doing any
shifting of the spectrum, while the other models where first shifted in order to get
stable models.

Name nx nred nu ny tSTRUL tSDPT3

LAH 48 18 1 1 211.01 496.17
JE1 24 4 3 5 12.13 26.54

AC10 48 10 2 2 116.51 315.82
AC13 24 8 3 4 15.64 32.33
JE2 21 4 3 3 10.13 19.41
JE3 21 4 3 6 9.12 18.43
IH 20 10 11 10 15.72 30.64

CSE1 19 4 2 10 6.09 10.41
EB5 38 9 1 1 55.09 125.26

7 Conclusions

In this paper we have presented a dedicated assembler for the Schur matrix for SDPT3.
The Schur matrix is the coefficient matrix that defines the system of equations used in
order to solve for the search directions. The assembler utilizes the fact that many semidef-
inite programs in systems and control theory involve large matrix variables which implies
that the basis matrices have a special low rank structure that can be exploited in order
reduce the computational burden. We also presented a related extension to the modelling

56 Paper B Lowrank exploitation in semidefinite programming for control

language YALMIP which allows us to keep track of aggregated matrix variables, and ex-
ploit these in a solver. In two examples, it was demonstrated that using this method can be
beneficial. The first example was an academic example where the SDP has the so called
KYP structure for increasing sizes of the problem. It this example, the speedup using
our code was about five times faster than using SDPT3, SeDuMi and LMI Lab for some
sizes of the problem. In the second example, we tested the code on a model reduction
algorithm on models from the COMPLIB library. The speed up here was not as good as
in the previous example, but still most of the examples are at least twice as fast as SDPT3.
There are several contributing factors to this. The major one is that in the first example,
we have multiple constraints which include the same variables. This means the time spent
on assembling the Schur matrix is three (since we had three constraints) times as large as
if we had only had one constraint, but the time to solve for the search directions is only
dependent on the number of variables. In the second example we do not have this situa-
tion. Finally, we remark that since sparsity in the basis matrices is beneficial for SDPT3,
our code would be even better on discrete time problems since these types of problems
often have full basis matrices.

References

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system
and control theory, volume 15 of Studies in Applied Mathematics. SIAM, 1994. ISBN
0-89871-334-X.

P. Gahinet, A. Nemirovski, AJ Laub, and M. Chilali. LMI control toolbox. The Math-
Works Inc, 1995.

P. Gahinet, P. Apkarian, and M. Chilali. Affine parameter-dependent Lyapunov functions
and real parametric uncertainty. IEEE Transactions on Automatic Control, 41(3):436 –
442, 1996. ISSN 0018-9286.

C. Helmberg, F. Rendl, R.J. Vanderbei, and H. Wolkowicz. An interior-point method for
semidefinite programming. SIAM Journal on Optimization, 6:342–361, 1996.

A. Helmersson. Model reduction using LMIs. In Proceedings of the 33rd IEEE Confer-
ence on Decision and Control, pages 3217–3222, Orlando, Florida, February 1994.

T. Iwasaki and G. Shibata. LPV system analysis via quadratic separator for uncertain
implicit systems. IEEE Transactions on Automatic Control, 46(8):1195 – 1208, 2001.
ISSN 0018-9286.

J. H. Johansson and A. Hansson. An inexact interior-point method for system analysis.
International Journal of Control, To appear.

C.-Y. Kao, A. Megretski, and U. Jönsson. Specialized fast algorithms for IQC feasibility
and optimization problems. Automatica, 40(2):239 – 252, 2004. ISSN 0005-1098.

M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the monotone semidefinite
linear complementarity problem in symmetric matrices. SIAM Journal on Optimiza-
tion, 7:86, 1997.

References 57

F. Leibfritz. COMPLeIB, COnstraint Matrix-optimization Problem LIbrary-a collection
of test examples for nonlinear semidefinite programs, control system design and related
problems. Technical report, Technical report, Universität Trier, 2003, 2003.

Z. Liu and L. Vandenberghe. Low-rank structure in semidefinite programs derived from
the KYP lemma. In Proceedings of the 46th IEEE Conference on Decision and Control.
Citeseer, 2007.

J. Löfberg. YALMIP: a toolbox for modeling and optimization in MATLAB. Computer
Aided Control Systems Design, 2004 IEEE International Symposium on, pages 284–
289, 2004.

A. Megretski and A. Rantzer. System analysis via integral quadratic constraints. IEEE
Transactions on Automatic Control, 42(6):819 – 830, 1997. ISSN 0018-9286.

R.D.C. Monteiro. Primal–dual path-following algorithms for semidefinite programming.
SIAM Journal on Optimization, 7(3):663–678, 1997.

Y. Nesterov and A. Nemirovsky. Interior point polynomial methods in convex program-
ming. Studies in applied mathematics, 13, 1994.

Y. E. Nesterov and M. J. Todd. Self-scaled barriers and interior-point methods for con-
vex programming. Mathematics of Operations Research, 22(1):1–42, 1997. ISSN
0364765X. URL http://www.jstor.org/stable/3690138.

J.F. Sturm. Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11(1):625–653, 1999.

R.H. Tütüncü, K.C. Toh, and M.J. Todd. Solving semidefinite-quadratic-linear programs
using SDPT3. Mathematical Programming, 95(2):189–217, 2003.

L. Vandenberghe, V.R. Balakrishnan, R. Wallin, A. Hansson, and T. Roh. Interior-point
algorithms for semidefinite programming problems derived from the KYP lemma.
Positive Polynomials in Control, Lectures Notes in Control and Information Science.
Springer, 2004.

R. Wallin, C.-Y. Kao, and A. Hansson. A cutting plane method for solving KYP-SDPs.
Automatica, 44(2):418 – 429, 2008. ISSN 0005-1098.

R. Wallin, A. Hansson, and J. H. Johansson. A structure exploiting preprocessor for
semidefinite programs derived from the Kalman-Yakubovich-Popov lemma. IEEE
Transactions on Automatic Control, 54(4):697–704, April 2009. ISSN 0018-9286.
doi: 10.1109/TAC.2009.2014922.

H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of Semidefinite Programming:
Theory, Algorithms, and Applications. Kluwer Academic Publishers, 2000.

M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of SDPA 6.0
(semidefinite programming algorithm 6.0). Optimization Methods and Software, 18
(4):491–505, 2003.

58 Paper B Lowrank exploitation in semidefinite programming for control

Licentiate Theses
Division of Automatic Control

Linköping University

P. Andersson: Adaptive Forgetting through Multiple Models and Adaptive Control of Car Dynam-
ics. Thesis No. 15, 1983.
B. Wahlberg: On Model Simplification in System Identification. Thesis No. 47, 1985.
A. Isaksson: Identification of Time Varying Systems and Applications of System Identification to
Signal Processing. Thesis No. 75, 1986.
G. Malmberg: A Study of Adaptive Control Missiles. Thesis No. 76, 1986.
S. Gunnarsson: On the Mean Square Error of Transfer Function Estimates with Applications to
Control. Thesis No. 90, 1986.
M. Viberg: On the Adaptive Array Problem. Thesis No. 117, 1987.

K. Ståhl: On the Frequency Domain Analysis of Nonlinear Systems. Thesis No. 137, 1988.
A. Skeppstedt: Construction of Composite Models from Large Data-Sets. Thesis No. 149, 1988.
P. A. J. Nagy: MaMiS: A Programming Environment for Numeric/Symbolic Data Processing.
Thesis No. 153, 1988.
K. Forsman: Applications of Constructive Algebra to Control Problems. Thesis No. 231, 1990.
I. Klein: Planning for a Class of Sequential Control Problems. Thesis No. 234, 1990.
F. Gustafsson: Optimal Segmentation of Linear Regression Parameters. Thesis No. 246, 1990.
H. Hjalmarsson: On Estimation of Model Quality in System Identification. Thesis No. 251, 1990.
S. Andersson: Sensor Array Processing; Application to Mobile Communication Systems and Di-
mension Reduction. Thesis No. 255, 1990.
K. Wang Chen: Observability and Invertibility of Nonlinear Systems: A Differential Algebraic
Approach. Thesis No. 282, 1991.
J. Sjöberg: Regularization Issues in Neural Network Models of Dynamical Systems. Thesis
No. 366, 1993.
P. Pucar: Segmentation of Laser Range Radar Images Using Hidden Markov Field Models. Thesis
No. 403, 1993.
H. Fortell: Volterra and Algebraic Approaches to the Zero Dynamics. Thesis No. 438, 1994.
T. McKelvey: On State-Space Models in System Identification. Thesis No. 447, 1994.
T. Andersson: Concepts and Algorithms for Non-Linear System Identifiability. Thesis No. 448,
1994.
P. Lindskog: Algorithms and Tools for System Identification Using Prior Knowledge. Thesis
No. 456, 1994.
J. Plantin: Algebraic Methods for Verification and Control of Discrete Event Dynamic Systems.
Thesis No. 501, 1995.
J. Gunnarsson: On Modeling of Discrete Event Dynamic Systems, Using Symbolic Algebraic
Methods. Thesis No. 502, 1995.
A. Ericsson: Fast Power Control to Counteract Rayleigh Fading in Cellular Radio Systems. Thesis
No. 527, 1995.
M. Jirstrand: Algebraic Methods for Modeling and Design in Control. Thesis No. 540, 1996.
K. Edström: Simulation of Mode Switching Systems Using Switched Bond Graphs. Thesis
No. 586, 1996.
J. Palmqvist: On Integrity Monitoring of Integrated Navigation Systems. Thesis No. 600, 1997.
A. Stenman: Just-in-Time Models with Applications to Dynamical Systems. Thesis No. 601, 1997.
M. Andersson: Experimental Design and Updating of Finite Element Models. Thesis No. 611,
1997.
U. Forssell: Properties and Usage of Closed-Loop Identification Methods. Thesis No. 641, 1997.

M. Larsson: On Modeling and Diagnosis of Discrete Event Dynamic systems. Thesis No. 648,
1997.
N. Bergman: Bayesian Inference in Terrain Navigation. Thesis No. 649, 1997.
V. Einarsson: On Verification of Switched Systems Using Abstractions. Thesis No. 705, 1998.
J. Blom, F. Gunnarsson: Power Control in Cellular Radio Systems. Thesis No. 706, 1998.
P. Spångéus: Hybrid Control using LP and LMI methods – Some Applications. Thesis No. 724,
1998.
M. Norrlöf: On Analysis and Implementation of Iterative Learning Control. Thesis No. 727, 1998.
A. Hagenblad: Aspects of the Identification of Wiener Models. Thesis No. 793, 1999.
F. Tjärnström: Quality Estimation of Approximate Models. Thesis No. 810, 2000.
C. Carlsson: Vehicle Size and Orientation Estimation Using Geometric Fitting. Thesis No. 840,
2000.
J. Löfberg: Linear Model Predictive Control: Stability and Robustness. Thesis No. 866, 2001.

O. Härkegård: Flight Control Design Using Backstepping. Thesis No. 875, 2001.
J. Elbornsson: Equalization of Distortion in A/D Converters. Thesis No. 883, 2001.
J. Roll: Robust Verification and Identification of Piecewise Affine Systems. Thesis No. 899, 2001.
I. Lind: Regressor Selection in System Identification using ANOVA. Thesis No. 921, 2001.
R. Karlsson: Simulation Based Methods for Target Tracking. Thesis No. 930, 2002.
P.-J. Nordlund: Sequential Monte Carlo Filters and Integrated Navigation. Thesis No. 945, 2002.

M. Östring: Identification, Diagnosis, and Control of a Flexible Robot Arm. Thesis No. 948, 2002.
C. Olsson: Active Engine Vibration Isolation using Feedback Control. Thesis No. 968, 2002.
J. Jansson: Tracking and Decision Making for Automotive Collision Avoidance. Thesis No. 965,
2002.
N. Persson: Event Based Sampling with Application to Spectral Estimation. Thesis No. 981, 2002.
D. Lindgren: Subspace Selection Techniques for Classification Problems. Thesis No. 995, 2002.
E. Geijer Lundin: Uplink Load in CDMA Cellular Systems. Thesis No. 1045, 2003.
M. Enqvist: Some Results on Linear Models of Nonlinear Systems. Thesis No. 1046, 2003.
T. Schön: On Computational Methods for Nonlinear Estimation. Thesis No. 1047, 2003.
F. Gunnarsson: On Modeling and Control of Network Queue Dynamics. Thesis No. 1048, 2003.
S. Björklund: A Survey and Comparison of Time-Delay Estimation Methods in Linear Systems.
Thesis No. 1061, 2003.
M. Gerdin: Parameter Estimation in Linear Descriptor Systems. Thesis No. 1085, 2004.
A. Eidehall: An Automotive Lane Guidance System. Thesis No. 1122, 2004.
E. Wernholt: On Multivariable and Nonlinear Identification of Industrial Robots. Thesis No. 1131,
2004.
J. Gillberg: Methods for Frequency Domain Estimation of Continuous-Time Models. Thesis
No. 1133, 2004.
G. Hendeby: Fundamental Estimation and Detection Limits in Linear Non-Gaussian Systems.
Thesis No. 1199, 2005.
D. Axehill: Applications of Integer Quadratic Programming in Control and Communication. Thesis
No. 1218, 2005.
J. Sjöberg: Some Results On Optimal Control for Nonlinear Descriptor Systems. Thesis No. 1227,
2006.
D. Törnqvist: Statistical Fault Detection with Applications to IMU Disturbances. Thesis No. 1258,
2006.
H. Tidefelt: Structural algorithms and perturbations in differential-algebraic equations. Thesis
No. 1318, 2007.

S. Moberg: On Modeling and Control of Flexible Manipulators. Thesis No. 1336, 2007.
J. Wallén: On Kinematic Modelling and Iterative Learning Control of Industrial Robots. Thesis
No. 1343, 2008.
J. Harju Johansson: A Structure Utilizing Inexact Primal-Dual Interior-Point Method for Analysis
of Linear Differential Inclusions. Thesis No. 1367, 2008.
J. D. Hol: Pose Estimation and Calibration Algorithms for Vision and Inertial Sensors. Thesis
No. 1370, 2008.
H. Ohlsson: Regression on Manifolds with Implications for System Identification. Thesis
No. 1382, 2008.
D. Ankelhed: On low order controller synthesis using rational constraints. Thesis No. 1398, 2009.
P. Skoglar: Planning Methods for Aerial Exploration and Ground Target Tracking. Thesis
No. 1420, 2009.
C. Lundquist: Automotive Sensor Fusion for Situation Awareness. Thesis No. 1422, 2009.
C. Lyzell: Initialization Methods for System Identification. Thesis No. 1426, 2009.

