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Ruining the Mood...
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Application Domains

Sensor and
communications networks

Biological networks - dinated control
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The Mandatory Bio-Slide

» As sensor webs, large-scale robot teams, and networked embedded
devices emerge, algorithms are needed for inter-connected systems
with limited communication, computation, and sensing capabilities

* How to effectively control such systems?
— What is the correct model?
— What is the correct mode of interaction?

— Does every individual matter?
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The Starting Point
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SESSION 1
GRAPH-BASED CONTROL
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“They look like ants.”
— Stephen Pratt, Arizona State University
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Graphs as Network Abstractions

* A networked sensing and actuation system consists of

— NODES - physical entities with limited resources (computation,
communication, perception, control)

— EDGES - virtual entities that encode the flow of information between
the nodes

* The “right” mathematical object for characterizing such systems at the
network-level is a GRAPH

— Purely combinatorial object (no geometry or dynamics)

— The characteristics of the information flow is abstracted away through
the (possibly weighted and directed) edges
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Graphs as Network Abstractions

» The connection between the combinatorial graphs and the geometry
of the system can for instance be made through geometrically defined
edges.

« Examples of such proximity graphs include disk-graphs, Delaunay
graphs, visibility graphs, and Gabriel graphs [1].
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The Basic Setup

o z;(k)= “state” at node i at time k x; (k)
« N, (k)= “neighbors” to agent i ‘/\
Information ‘““available to agent i

i (k) = {x;(k) | 7 € Ni(k)}

or
IT(k) ={zi(k) —z;(k) | j € Ni(k)} «— relative info. (sensing)

common ref. frame (comms.)

» Update rule:
z;(k+1) =@xi(k), I;(k)) <——— discrete time
or
() =(EJai(1). Li(1)) < continuous time

How pick the update rule?
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Rendezvous — A Canonical Problem

* Given a collection of mobile agents who can only measure the relative
displacement of their neighbors (no global coordinates)

/fﬂj
YT — s

Ly
* Problem: Have all the agents meet at the same (unspecified) position

is what agent i can measure

« If there are only two agents, it makes sense to have them drive
towards each other, 1.e.

1 —v1(x1 — 2)
rp = —y2(x2 — 1)

e If 71 = 72 they should meet halfway
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Rendezvous — A Canonical Problem

» If there are more than two agents, they should probably aim towards
the centroid of their neighbors (or something similar)

Oxj
o T; = — g = 055
- — Tl i ’Yg[( i j)
xX; J 7
Oxl

Fact [2-4]: As long as the graph is
connected (iff), the consensus equation
drives all agents to the same state value

1 N
j=1

t—o00
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Algebraic Graph Theory

* To show this, we need some tools...

« Algebraic graph theory provides a bridge between the combinatorial
graph objects and their matrix representations

— Degree matrix:

D = diag(deg(ny),...,deg(ny))
— Adjacency matrix: " n;
. ] 1 if o—=0
A =la;;], a;; =

0O o.w.
— Incidence matrix (directed graphs): e; M
1 if o0
. ng e;
I =[vj], vij =4 -1 if o0

O o.w.
— Graph Laplacian:

L=D—-A=7171T
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Algebraic Graph Theory - Example
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Algebraic Graph Theory - Example

n3

1 0 0 0 0 0 0
-1 1 1 0 0 0 0
0 -1 0 1 0 0 0
0 0 -1 -1 1 1 0
0 0 0 0 -1 -1 0

0 0 0 0 0 -1 1
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The Consensus Equation

» The reason why the graph Laplacian is so important is through the
already seen “consensus equation”

i?iz— Z (a:z-—xj), 1= 1,...,N
JEN;
or equivalently (W.L.O.G. scalar agents)
fEi = —deg (nz)azz + Zé\le QT .
T = = —Lx
xr = {xl xo - xN}

« This is an autonomous LTI system whose convergence properties
depend purely on the spectral properties of the Laplacian.
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Graph Laplacians: Useful Properties

— It is orientation independent

— It 1s symmetric and positive semi-definite

— If the graph is connected then

eig(L) = {)\1,...,)\]\7}, With O = A1 <X < < Ay
eigv(L) = {v1,...,vN}, with null(£L) = span{v1} = span{1}
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Stability - Basics

» The stability properties (what happens as time goes to infinity?) of a
linear, time-invariant system is completely determined by the
eigenvalues of the system matrix

t=Ax (&= —Lx)
» Eigenvalues A(A) = A1,..., Ay

« Asymptotic stability: Re()\;) <0, i=1,...,n = lim z(¢t) =0
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Stability - Basics

« Unstable: Ji s.t. Re(\;) >0, = lim z(t) = o0
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* Critically stable:

0=\ >N\>... >\, =
limy o z(t) € null(A) o2y

This 1s the case for the/v j:ﬁ

consensus equation
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Static Consensus

« If the graph is static and connected, under the consensus equation, the
states will reach null(L)

» Fact (again): o ]
o
null(L) =span{l}, xenull(L) & z=| . |, aeR
|«

* So all the agents state values will end up at the same value, i.e. the
consensus/rendezvous problem is solved!

b= 3 (@) = Jim a(t) = %ij(()) _ %1%(0)

: t—o0
JEN;
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Formation Control

* Being able to reach consensus goes beyond solving the rendezvous
problem.

 Formation control:

xl,...,”ZCN yla---?_yN
agent positions target positions

« But, formation achieved if the agents are in any translated version of
the targets, 1.e.,
x; =vy; + 7, Vi, for some 7
* Enter the consensus equation [5]:

i = xi — s b= Y [(@i — ;) = (i = )
éi = — (61; — ej) JENi
jEN; z;(00) =y; + 7, Vi
ei(00) =ej(00) =T
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Formation Control

Multi-Robot Assignment
and Formation Control

Magnu

Georgia Roboties and Intelligent
Svsten |.al

.¢l
i
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Convergence Rates

* The second smallest eigenvalue of the graph Laplacian is really
important!

» Algebraic Connectivity (= 0 if and only if graph is disconnected)
» Fiedler Value (robustness measure)
* Convergence Rate:

1
() — ElTﬂﬁ(O)ll < Ce!

* Punch-line: The more connected the network is, the faster it
converges (and the more information needs to be shuffled through the
network)

« Complete graph: A2 = n

o—& 0 0 —°
 Star graph: A2 =1
« Path graph: A2 <1
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Cheeger’s Inequality

e(S)
min{|S], |5}
(measures how many edges need to be

cut to make the two subsets disconnected
as compared to the number of nodes that

are lost)

¢(S) =

isoperimetric number:

#(G) = min 4(S)

(measures the robustness of the graph)

?(G)?
2A(G)

¢(G) > Ao >
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Beyond Static Consensus

* So far, the consensus equation will drive the node states to the same
value if the graph is static and connected.

* But, this is clearly not the case in a number of situations:
— Edges = communication links
» Random failures
» Dependence on the position (shadowing,...)
 Interference
* Bandwidth issues
— Edges = sensing
* Range-limited sensors
* Occlusions

* Weirdly shaped sensing regions
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Summary I

Graphs are natural abstractions (combinatorics instead of geometry)

Consensus problem (and equation)
Static Graphs:
» Undirected: Average consensus iff G is connected

Need richer network models!
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