F2E5216/TS1002 Adaptive Filtering and Change Detection

Fredrik Gustafsson (LiTH) and Bo Wahlberg (KTH)

1

• Basics of theory and examples

Lecture 2

- The signal estimation problem
- Applications and simple algorithms

Lecture 2, 2005

F2E5216/TS1002

Likelihood Ratio Tests

$$\begin{split} \mathbf{LRT}: \ T(x) &= \frac{p(x|H_1)}{p(x|H_0)}, \quad \mathrm{PDF}: g(t|H_i) \\ \mathbf{GLRT}: \ L(x) &= \frac{p(x|H_1, \hat{\theta}_1^{ML})}{p(x|H_0, \hat{\theta}_0^{ML})}, \quad \text{(asymptotic) PDF}: g(l|H_i) \end{split}$$

Threshold:

$$P_{FA} = \int_{\gamma}^{\infty} g(s|H_0) ds = \alpha \implies$$
$$P_D = \int_{\gamma}^{\infty} g(s|H_1) ds$$

F2E5216/TS1002

Review Lecture 1

Given: Data x[n] with known distribution under the *null hypothesis* H_0 and the *alternative hypothesis* H_1 , respectively.

General test: Form a test statistic T(x).

Decide H_0 if $T(x) < \gamma$ (threshold) Decide H_1 if $T(x) > \gamma$

- Probability of false alarm $P_{FA} = P(H_1|H_0) = \int_{x:T(x)>\gamma} p(x|H_0) dx$
- Probability of detection $P_D = P(H_1|H_1) = \int_{x:T(x) > \gamma} p(x|H_1) dx$

Lecture 2, 2005		

F2E5216/TS1002

Basic Theory

- A 30 minutes primer on:
- Signal estimation
- Adaptive filtering
- Kalman filtering
- Change detection
- Evaluation

Accompanying texts: Gustafsson, Chapter 1-2.

2

Signal estimation

Signal model

 $y(t) = \theta(t) + e(t)$

Common algorithms:

$$\hat{\theta}(t+1) = \hat{\theta}(t) + \gamma \varepsilon(t) \varepsilon(t) = y(t) - \hat{y}(t),$$

$$\hat{ heta}(t+1) ~=~ (1-\lambda_t)\hat{ heta}(t)+\lambda_tarepsilon(t)$$
 (forgetting factor)

F2E5216/TS1002

Example: fuel consumption estimation.

Slow filter \Rightarrow good noise attenuation. Fast filter \Rightarrow good tracking.

Lecture 2, 2005	5	Lecture 2, 2005	6

F2E5216/TS1002

Parameter estimation using adaptive filtering

Parametric model of linear system

$$y(t) = G(q;\theta)u(t) + H(q;\theta)e(t)$$

Special consideration to models linear in parameters (ARX etc):

$$y(t) = \varphi^T(t)\theta + e(t)$$

Generic adaptive filter:

$$\hat{\theta}(t+1) = \hat{\theta}(t) + \gamma K(t)\varepsilon(t) \varepsilon(t) = y(t) - \hat{y}(t),$$

RLS, WLS, LMS and KF correspond to different K(t).

F2E5216/TS1002

Example: friction estimation

$$y_t = \theta_t^{(1)} u_t + \theta_t^{(2)} + e_t,$$

 θ_t contains a slope and an offset, u_t is the input to the model (the engine torque) y_t is the measured output (the so called wheel slip). For friction monitoring, the slope $\theta_t^{(1)}$ is the relevant parameter

Change detection = modeling and estimation in order to map the problem on a standard detection test

State estimation using Kalman filtering

State space model:

$$\begin{array}{rcl} x(t+1) &=& Ax(t) + B_u u(t) + B_v v(t) + \delta(t-k) B_f f(t) \\ y(t) &=& Cx(t) + D_u u(t) + D_e e(t) + \delta(t-k) D_f f(t) \end{array}$$

Controlled and measured inputs: u(t)

Process noise: v(t)

Measurement noise: e(t)

Faults in actuator and sensor, or a state disturbance: f(t)

Lecture 2, 2005

10

F2E5216/TS1002

Tuning the Kalman filter

Compromise between tracking ability and noise attenuation is controlled by the signal to noise ratio (SNR) Var (v(t))/ Var (e(t)), which is tuned by the scalar γ .

Increase the tracking ability by increasing the SNR. Rather poor result, and in particular in the transient!

F2E5216/TS1002

Lecture 2, 2005

The Kalman filter

$$\hat{x}(t+1) = A\hat{x}(t) + K(t)\varepsilon(t)$$

$$\varepsilon(t) = y(t) - \hat{y}(t) = y(t) - C\hat{x}(t)$$

The residual $\varepsilon(t)$ can be used for change detection.

The Kalman filter is optimal for Gaussian noise in the senses of:

Minimum variance estimator: There is no other estimator that gives smaller variance error ${\rm Var}(\hat{x}(t)-x(t))$

Conditional expectation of x(t), given the observed values of y(t).

9

F2E5216/TS1002

An algebraic alternative

Parity space: Project vectors of stacked measurements onto a subspace, which is defined as the residual.

$$\varepsilon(t) = W^T (Y - H_u U)$$

With proper design of W, the residual will react to certain faults in specific patters, making fault isolation possible.

Summary of filtering

For change detection, the filter can be seen as a residual generator:

Lecture 2, 2005	13	Lecture 2, 2005	14
F2E5216/TS1002		F2E5216/TS1002	
Change detection approaches:			
Whiteness test Under H_0 , ε_t is i.i.d. and $N(0, 1)$.		Change detection approaches, cont.	
Define a distance measure s_t from I.I.d., for example $s_t = \varepsilon_t$, $s_t = \varepsilon_t^2 - \lambda$ and $s_t = K_t \varepsilon_t$ (vector with correlations). Then		Parallel filter approach where one slow (global) and one fast fil compared.	ter are
$H_0: s_t = w_t$ $H_1: s_t = A + w_t$		Filter bank based on a multiple hypothesis test.	

and we are back to detection theory.

Data

 y_t, u_t

F2E5216/TS1002

Examples of on-line stopping rules

$$\begin{aligned} \mathbf{CUSUM}: \quad g_t &= \max(g_{t-1} + s_t - \nu, 0) \\ \mathbf{WMA::} \quad g_t &= \sum_{k=t-L+1}^t s_k \\ \mathbf{GMA}: \quad g_t &= \lambda g_{t-1} + (1-\lambda)s_t \end{aligned}$$

Alarm if $g_t > h$

More or less low-pass filtering and thresholding.

F2E5216/TS1002

Evaluation and Design

Stopping rules

Dist. meas.

 g_t

Example: GLRT $g_t = \frac{1}{N} \sum_{t=1}^N s_t \leftrightarrow T(x)$ for batchwise processing

 s_t

Threshold

Stop. rule

Alarm

 \hat{k}, t_a

Change detection based on a hypothesis test for no change and change respectively, needs a stopping rule. This includes both the

 $\hat{\theta}_t, \varepsilon_t$

Averaging

whiteness test and parallel filter approaches.

Filter

 s_t

• For surveillance, tracking ability and variance error in the estimates are the main performance measures.

• For fault detection, it is of importance to get the alarms as soon as possible – the delay for detection – while the number of false alarms should be small.

F2E5216/TS1002

Example on tracking design

The Kalman filter for target tracking has a unique minimum for its SNR.

Better transient due to large initial error covariance matrix

Alarm

 \hat{k}, t_a

Example on tracking and change detection design

Evaluation of a particular adaptive filter for friction estimation:

Lecture 2, 2005 21

F2E5216/TS1002

Change in the mean model

$$y_t = \theta_t + e_t, \ \operatorname{E}(e_t^2) = \lambda$$

Problems:

- \bullet Monitoring of θ
- \bullet Limit checking of θ
- \bullet Detection of abrupt changes in θ
- •Detection of abrupt changes in λ

Signal Estimation and Surveillance

Today:

- The change in the mean problem (signal estimation)
- Some applications
- Averaging, filtering and estimation approaches
- Stopping rules

Lecture 2, 2005

F2E5216/TS1002

Application: Fuel Monitoring

Improve Volvo's filter (solid line to the left) with respect to:

- Noise attenuation
- Tracking speed at abrupt accelerator changes

Surveillance of θ should be approached with change detection ideas!

22

Application: Paper refinery

Power signal from grinding engine:

• The noise must be considerably attenuated to be useful in the feedback loop.

• It is very important to quickly detect abrupt power decreases to be able to remove the grinding discs quickly and avoid an expensive disc crash.

Lecture 2, 2005

25

F2E5216/TS1002

Sensor variance changes during transonics. **Problem:** Change detection and modeling of noise variance.

Application: photon arrival

Poisson process with piecewise constant arrival intensity. **Problem:** Tracking the brightness changes of galactical and extragalactical objects

Lecture	2,	2005
---------	----	------

26

F2E5216/TS1002

Activity or background noise can be classified using variance change detection.

Application: Rat EEG

Next Time

Change detection methods for change in the mean:

- The CUSUM test
- Filter and detector evaluation
- The likelihood concept
- Maximum likelihood and likelihood ratio based CD
- Information based CD

Lecture 2, 2005 29 Lecture 2, 2005 30

Exercises for Lectures 2 and 3

Link on homepage

http://www.control.isy.liu.se/~fredrik/detect/exercises.pdf

Exercise: 4, 5, 6, 8, 9, 10, 13