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e Basics of theory and examples
e The signal estimation problem
e Applications and simple algorithms
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Review Lecture 1

Given: Data [n] with known distribution under the null hypothesis
H, and the alternative hypothesis H1, respectively.

General test: Form a test statistic 7'().

Decide Hy if T(z) < 7y (threshold)
Decide H; if T(z) >~

e Probability of false alarm
Pra = P(H:|Hy) = fz:T($)>7p(ﬂ3|Ho)d$

e Probability of detection
PD:P(Hlle):fxT( p(x|H,)dx
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Likelihood Ratio Tests

LRT: T'(z) = ié: ; PDF: g(t|H;)
p(a|Hy, 01T)

GLRT: L(z) = ——
p(x|H0a0(]JV[L)

(asymptotic) PDF: g(I| H;)

Threshold:

Pry :/ g(s|Hp)ds =a =
o

PD/ o(s| Hy)ds
Y
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Basic Theory

A 30 minutes primer on:
e Signal estimation

e Adaptive filtering

e Kalman filtering

e Change detection

e Evaluation

Accompanying texts: Gustafsson, Chapter 1-2.
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Signal estimation

Signal model
y(t) = 0(t) +e(t)

Common algorithms:

~

Ot+1) = 0(t) +~e(t)
e(t) = y(t) —u(),

~

Ot+1) = (1— )\t)é(t) + M\e(t)  (forgetting factor)
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Example: fuel consumption estimation.

— Measurement
— Slow filter

0 20 40 60 80 100

—— Measurement
— Fast filter

a1

0 20 40 60 80 100
Time [s]

Slow filter = good noise attenuation. Fast filter = good tracking.
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Parameter estimation using adaptive filtering

Parametric model of linear system

y(t) = G(g; 0)u(t) + H(g; O)e(t)
Special consideration to models linear in parameters (ARX etc):
y(t) = ¢" ()0 +e(t)

Generic adaptive filter:

~ ~

0t+1) = 0(t)+~K(t)e(t)
e(t) = y(t) —9(),
RLS, WLS, LMS and KF correspond to different K (¢).

Lecture 2, 2005

F2E5216/TS1002

Example: friction estimation

Y = Gt(l)ut + Q,EQ) + ey,

; contains a slope and an offset,
Uy is the input to the model (the engine torque)
¢ is the measured output (the so called wheel slip).

For friction monitoring, the slope Ht(l) is the relevant parameter

Change detection = modeling and estimation in order to map the
problem on a standard detection test
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= Measurements before change
o Measurements after change

0.01 0.3f] — Friction model before change
a - - - Friction model after change
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State estimation using Kalman filtering

State space model:

z(t+1) = Ax(t)+ Byu(t) + Byv(t) +0(t — k)Brf(t)
y(t) = Cua(t) + Dyu(t) + Dee(t) +6(t — k)Dsf(t)
Controlled and measured inputs: u(t)
Process noise: v(t)
Measurement noise: e(t)

Faults in actuator and sensor, or a state disturbance: f(t)

Lecture 2, 2005 10

F2E5216/TS1002

The Kalman filter

zt+1) = Az(t) + K(t)e(t)
e(t) = y(t) —9(t) =y(t) — Ci(t),

The residual €(t) can be used for change detection.

The Kalman filter is optimal for Gaussian noise in the senses of:

Minimum variance estimator: There is no other estimator that gives
smaller variance error Var(Z(t) — x(t))

Conditional expectation of z(t), given the observed values of y(?).
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Tuning the Kalman filter

Compromise between tracking ability and noise attenuation is
controlled by the signal to noise ratio (SNR) Var (v(t))/ Var (e(t)),
which is tuned by the scalar 7.

4
—o— Measured position
-+ True position

x 10

o' Initial filter design

. -
j‘ o= Measured position
o5 -« - Estimated position
0 1 2 3 4 5 0 1 2 3 4 5
x 10°* x10°

Increase the tracking ability by increasing the SNR.
Rather poor result, and in particular in the transient!
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An algebraic alternative

Parity space: Project vectors of stacked measurements onto a
subspace, which is defined as the residual.

et) =Wy — H,U)

With proper design of 1, the residual will react to certain faults in
specific patters, making fault isolation possible.
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Summary of filtering

For change detection, the filter can be seen as a residual generator:

Uy

Yt Filter —
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Change detection approaches:

Whiteness test
Under Hy, €; isi.i.d. and N (0, 1).

Define a distance measure s; from i.i.d., for example s; = &y,
Sy = 5? — X and s; = K,&; (vector with correlations).

Then

Hozst:wt
Hi:s, = A+ wy

and we are back to detection theory.

Lecture 2, 2005

F2E5216/TS1002

Change detection approaches, cont.

Parallel filter approach where one slow (global) and one fast filter are
compared.

Filter bank based on a multiple hypothesis test.

Lecture 2, 2005 16




F2E5216/TS1002

Stopping rules

Change detection based on a hypothesis test for no change and
change respectively, needs a stopping rule. This includes both the
whiteness test and parallel filter approaches.

Data . ét, Et . St Alarm
— Filter Dist. meas. Stop. rule ——
Yt, Ut k',, ta

S . Alarm
2t Averaging gt Threshold —
k,tq

Example: GLRT ¢g; = % Zivzl s; <> T'(x) for batchwise processing
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Examples of on-line stopping rules

CUSUM: ¢, = max(g;—1 + s; — 1, 0)

WMA:: ¢, = Z Sk

k=t—L+1
GMA: ¢ =Ag1+ (1 —XN)s;

Alarmif g, > h

More or less low-pass filtering and thresholding.
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Evaluation and Design

e For surveillance, tracking ability and variance error in the
estimates are the main performance measures.

e For fault detection, it is of importance to get the alarms as soon as
possible — the delay for detection — while the number of false alarms
should be small.
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Example on tracking design

The Kalman filter for target tracking has a unique minimum for its
SNR.

Optimal adaptation gain for KF is 6723 X 10" Optimized filter design

550

500 25

450

RMSE
Y

400

350

300 0
—e— Measured position
s -» - Estimated position

10° 10* 10° 10° 0 1 2 3 4
Adaptation gain

Better transient due to large initial error covariance matrix
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Example on tracking and change detection
design

Evaluation of a particular adaptive filter for friction estimation:

0.0!

— Estimated parameters
0.045}_- = True parameters

=)
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Signal Estimation and Surveillance
Today:

e The change in the mean problem (signal estimation)

g: 0.04 - = =
e 1 o [ »
oo [ [ HH H Hmﬂﬂ 003 5 e Some applications
-8 -6 -4 -2 0 2 4 6 8 1
& x107¢ 0.0250,
* 002 e Averaging, filtering and estimation approaches
.§4o 1 o015
é 0.01 H
52 0005 § e Stopping rules
0 201 202 203 ’;‘ 205 206 207 ’E 209 00 50 160 150 200 250 360
Detection time [samples] Time [samples]
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Application: Fuel Monitoring
Change in the mean model . ——— « _
— Vowesier || & T Mesuremonts
2 | §20 Ir\J: 1'7 Change times
Skl o i I s .
: T W s NN
Yy = 9,5 + €¢, E(et) = A 3 o 100 200 300 400 500
Problems: g
5 g"
® Monitoring of € Ee J\[\ [J ; [\A
0 2b 60 8‘0 160 0 100 200A 300 {ll()g . 500
Time [s] Time [samples]

e Limit checking of
e Detection of abrupt changes in 6

eDetection of abrupt changes in A
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Improve Volvo’s filter (solid line to the left) with respect to:
e Noise attenuation

e Tracking speed at abrupt accelerator changes
Surveillance of 8 should be approached with change detection ideas!
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Application: Paper refinery

1600]

1400|

1200]

Power
Power

0 2000 4000 6000 8000 10000 12000 14000 [ 2000 4000 6000 8000 10000 12000 14000
Time [samples] Time [samples]

Power signal from grinding engine:
e The noise must be considerably attenuated to be useful in the
feedback loop.

e |t is very important to quickly detect abrupt power decreases to be
able to remove the grinding discs quickly and avoid an expensive disc
crash.
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Application: photon arrival
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Poisson process with piecewise constant arrival intensity.
Problem: Tracking the brightness changes of galactical and
extragalactical objects
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Application: altitude sensor

Barometric height residuals

Low-pass filtered and segmented squared residuals

o 500 1000 1500 2000 2500 3000 3500 4000 10

Low-pass filtered squared residuals

0 500 1000 1500 2000 2500 3000 3500 4000 1g~! L L L L L L L
Time [samples] 0 500 1000 1500 2000 2500 3000 3500 4000

Sensor variance changes during transonics.
Problem: Change detection and modeling of noise variance.
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Application: Rat EEG

Rat EEG Rat EEG and segmentation of AR(2) model and noise variance

0 500 1000 1500 2000 2500 3000 3500 4000

1000 1500 2000 2500 3000 3500 4000 of

Segmentation of signal's variance o5k

0 500 1000 1500 2000 2500 3000 3500 4000

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Time [samples] Time [samples]

Activity or background noise can be classified using variance change
detection.
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Exercises for Lectures 2 and 3

Link on homepage

http://www.control.isy.liu.se/ fredrik/detect/exercises.pdf

Exercise: 4, 5,6, 8,9, 10, 13
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29

F2E5216/TS1002

Next Time

Change detection methods for change in the mean:

e The CUSUM test

e Filter and detector evaluation

e The likelihood concept

e Maximum likelihood and likelihood ratio based CD

e Information based CD
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