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F2E5216/TS1002 Adaptive Filtering and
Change Detection

Fredrik Gustafsson (LiTH) and Bo Wahlberg (KTH)

Lecture 3
Change detection methods for change in the mean.

• The CUSUM test
• Filter and detector evaluation
• The likelihood concept
• Maximum likelihood and likelihood ratio based CD
• Information based CD
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Change detection based on whiteness test

�Data
yt, ut

Filter �θ̂t, εt Dist. meas. �st Stop. rule �Alarm

k̂, ta

�st Averaging �gt Threshold �Alarm

k̂, ta

Example on ’named’ algorithms:
• Exponential forgetting of st = εt gives GMA.
• Sliding window of st = ε2

t gives a χ2(L) test.
• Sliding window of st = Ktεt gives asymptotic local approach.
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Cumulative Sum (CUSUM)

To test for a positive change in mean:

st = yt − ν (Subtract a drift term to prevent positive drift)

gt = gt−1 + st (Sum)

gt = 0, if gt < 0 (To prevent negative drift)

k̂ = t if gt < 0 (Possible estimate of change time)

gt = 0, and ta = t and alarm if gt > h > 0.

Rule of thumb: The drift term should be chosen as one half the
expected change magnitude
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Example: CUSUM

yt =

{
0 + e(t), for 0 < t ≤ 25

1 + e(t), for 25 < t ≤ 50.

where e ∈ N(0, 0.1). Compare h = 10 and ν = 0 with h = 5 and
ν = 0.5.
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CUSUM Change Time Estimation

Since gt is linearly increasing (in the mean) after a change, take k̂ to
the last time the CUSUM test was reseted (gt < 0).

Lecture 3, 2005 5

F2E5216/TS1002

Two-sided tests

Apply two tests in parallel, where the second one has −yt as the
input.

Tuning

Start with a large threshold and ν equal to half the expected change
magnitude. Then reduce the threshold so the required number of false
alarms or acceptable delay of detection are obtained

• For fewer false alarms, increase ν

• For faster detection decrease ν
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The Likelihood Concept
Likelihood is a measure of likeliness of what we have observed, given
the assumptions we have made.

For independent observations, the likelihood is computed by

yt = θ + et, Var(et) = R

lt(θ,R) = p(yt|θ,R) =
t∏

i=1

p(yt|θ,R)

= lt−1(θ,R)p(yt|θ,R)

To avoid numerical problems (|lt| > 10128 out of range!) and to get
nicer expressions (sum of squared residuals), the negative log
likelihood is often used:

− log lt(θ,R) = − log lt−1(θ,R) − log p(yt|θ,R)
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Point-Mass Approach

Evaluate the function p(yt|θ,R) on a 2D grid for θ and R. Run
lecture(’ML2’).
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Maximum Likelihood Estimator

The ML estimate is defined as the maximizing argument of the
likelihood

(̂θ,R)ML = arg max
θ,R

lt(θ,R)

= arg min
θ,R

− log lt(θ,R).

The example gives (̂θ,R)ML = (2.1, 1.1)
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Marginalization

Joint likelihood for θ,R: p(yt|θ,R)

Marginalization gives the likelihood for one variable only, e.g.

p(yt|θ) =

∫
p(yt|θ,R)p(R)dR

p(yt|R) =

∫
p(yt|θ,R)p(θ)dθ
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Point Mass Approach

Just sum the rows or columns!

ML estimates θ̂ML = 2.0 and R̂ML = 1.1.

Note (θ̂ML, R̂ML) �= (̂θ,R)ML!
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A General Adaptive Likelihood Estimator

A recursive and adaptive version using a forgetting factor α is

− log lt(θ,R) = −α log lt−1(θ,R) − (1 − α) log p(yt|θ,R)

Run lecture(’ML3’) for an example with likelihood forgetting
and one abrupt change.

Lecture 3, 2005 12



F2E5216/TS1002

Explicit Formulas for Gaussian Distribution
The noise et ∈ N(0, R) gives the likelihood

p(yt|θ,R) = (2πR)−t/2e−
1

2R

∑t
i=1(yi−θ)2

−2 log p(yt|θ,R) = t log(2πR) +
1

R

t∑
i=1

(yi − θ)2

and (joint) ML estimates θ̂ML = y =
1

t

t∑
i=1

yi

R̂ML = y2 − y2 =
1

t

t∑
i=1

(yi − θ̂ML)2

Compare to the formula Var(X) = E(X2) − (E(X))2.
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Likelihood based Change Detection

Basic idea: ML estimation of jump time k, where

p(yt|k, θ1, θ2, R1, R2) = p(yk
1 |θ1, R1)p(yt

k+1|θ2, R2)

We need to compute the likelihood for subsets of the observations!

Data y1, y2, .., yk︸ ︷︷ ︸
p(yk

1 |θ1,R1)

yk+1, yk+2, .., yt︸ ︷︷ ︸
p(yt

k+1|θ2,R2)

Compute the product for all possible change times k.

Back to standard detection problem: H(0): no jump;
H(k): jump at time t=k
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Nuisance Parameters

For change detection, the parameters θ1, R1 before the change and
θ2, R2 after the change are irrelevant.

• Prior knowledge: One or both parameters can be known

• Maximization. Replace one or both parameters by its ML estimate
in each interval.

• Marginalization. Integrate out one or both parameters in each
interval.
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Interesting Cases 1 and 2
1. θ is unknown, R is known.

−2 log lMGL
t ≈ t log(2πR) +

tR̂

R

−2 log lMML
t ≈ (t − 1) log(2πR) + log(t) +

tR̂

R

Best if R is approximately known.

2. Unknown θ, unknown R, and might change after the change time

−2 log lMGL
t ≈ t log(2π) + t + t log(R̂)

−2 log lMML
t ≈ t log(2π) + (t − 5) + log(t) −

(t − 3) log t(t − 5) + (t − 3) log(R̂)

Most general and requires no prior knowledge.
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Interesting Cases 3 and 4

3. θ is known (typically to be zero), R is unknown and abruptly
changing.

−2 log lMGL
t ≈ t log(2π) + t + t log(R̂)

−2 log lMML
t = t log(2π) + (t − 4) − (t − 2) log t(t − 4) +

(t − 2) log(R̂)

Suitable for detecting variance changes.

4. θ is unknown, R is unknown and constant. See Chapter 7.
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Example

yt =

{
0 + e(t), for 0 < t ≤ 25

1 + e(t), for 25 < t ≤ 50.

p(yk
1)p(yt

k+1) as a function of k, for methods 1,2,3.
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Conclusion: marginalization (lower row) works (sometimes) better
than maximization.
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Likelihood based Segmentation

Segmentation = multiple change point estimation

Applications:
I. Off-line data analysis

II. Gives recursive algorithms with natural recovery after alarm (there
is no initialization problem).

Toolbox: detectM with lf=[1 lambda] for case 1 above and
lf=[2] for case 2.
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Change Detection based on Model Validation

Data y1, y2, .., yt−L︸ ︷︷ ︸
θ̂1,R̂1

yt−L+1, .., yt︸ ︷︷ ︸
θ̂2,R̂2

A two-filter approach. What distance measures between the models
are available?
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Gaussian Test:

θ̂1 − θ̂2 ∈ N(0, P1 + P2), under H0

χ2 test:

(θ̂1 − θ̂2)
2

P1 + P2

∈ χ2(1), under H0

GLR or MLR tests
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Example
Design a test with a probability of false alarm of 95%.

Gaussian test:

P

⎛
⎜⎜⎜⎝

|θ̂1 − θ̂2|√
P1 + P2︸ ︷︷ ︸
N(0,1)

> 1.96

⎞
⎟⎟⎟⎠ = 0.95

χ2 test (Toolbox: chi2(1,0.95) = 3.79):

P

⎛
⎜⎜⎜⎝

(θ̂1 − θ̂2)
2

P1 + P2︸ ︷︷ ︸
χ2(1)

> 3.79 = 1.962

⎞
⎟⎟⎟⎠ = 0.95
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Summary

• Whiteness based CD (detect1) defined by the distance
measure between the residuals and zero, and the stopping rule.

• Parallel filter based CD (detect2) defined by the distance
measure between the hypothesis change and no change and the
stopping rule.

• Segmentation approaches (detectM) defined by the loss
function that is minimized w.r.t. kn.

Techniques: likelihoods, likelihood ratios, hypothesis tests, least
squares
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Change Detection Evaluation

A certain CUSUM test is applied to 250 realizations of the signal
below. The alarm times are shown in the histogram.
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How to measure the performance of the detector?
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Performance measures

• Mean time between false alarms (MTFA)

MTFA = E(ta|no change)

Related to MTFA is the false alarm rate (FAR).

• Mean time to detection (MTD).

MTD = E(ta − k|a given change at time k)

How long do we have to wait after a change until we get the alarm?

• Missed detection rate (MDR). What is the probability of not receiving
an alarm, when there has been a change. Note that in practice, a
large ta can be confused with a missed detection and a false alarm.
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As can be expected, the delay for detection (DFD) and missed
detection rate (MDR) are larger for the smaller first change.

Note the characteristic distribution of alarm times.
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Off-line measures

Accuracy of change point location, like

1

n

n∑
i=1

(k̂i − ko
i )

2

The Minimum Description Length (MDL). How much information is
needed to store a given signal? The latter measure is relevant in data
compression and communication areas.
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ARL

Average run length function, ARL(θ).

ARL(θ) = E(ta − k|a change of magnitude θ at time k)

A function that generalizes MTFA and MTD. How long does it take
before we get an alarm after a change of size θ. A very large value
could be interpreted as that a missed detection is quite likely.

MTFA = ARL(0)

MTD(θ) = ARL(θ)
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ARL for CUSUM

Recall the CUSUM test

gt = gt−1 + yt − ν

gt = 0, if gt < 0

gt = 0, and ta = t and alarm if gt > h > 0.

Rough approximation (noise-free case): alarm when
gt = (t − k)(θ − ν) > h.

Reality, alarm time depends on ν, h and σ = std(yt).

Anyway, ARL is a function of only two variables:

ARL(θ; h, ν, σ) = f

(
h

σ
,
θ − ν

σ

)

Lecture 3, 2005 29

F2E5216/TS1002

Approximations of the ARL function

The theoretical function is given by an integral equation which can be
solved numerically (see cusumarl).

Wald’s approximation is very accurate (see cusumarl).

ARL =
e−2(h/σ+1.166)μ/σ − 1 + 2(h/σ + 1.166)μ/σ

2μ2/σ2

μ = θ − ν. MC simulations (see cusumMC).
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Run length distribution

The run length distribution says more than just the average ARL
value. Monte Carlo simulations give false alarms and mean delay for
detection:
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Exercises for Lectures 2 and 3

Link on homepage

http://www.control.isy.liu.se/˜fredrik/detect/exercises.pdf

Exercise: 4, 5, 6, 8, 9, 10, 13
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Next Time: Adaptive Filtering

• Linear regression models

• Application areas

• Algorithms

• Properties

• Application examples
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