F2E5216/TS1002

F2E5216/TS1002 Adaptive Filtering and
Change Detection
Fredrik Gustafsson (LiTH) and Bo Wahlberg (KTH)

- t"A

Linkdpings universitet

Lecture 5
Change detection based on sliding windows (Chapter 6)
e Distance measures

e Detection and Isolation
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Model Validation

Data are taken from
e a sliding window (typical application).

Data : y17y27'”7yt—L7 yt—L—‘rl?'wa
'
Model 8¢ Model 0 ,Data Y

® an increasing window.

Nominal model (parameter vector 65) known from:

e recursive identification from past data.
e a nominal model, obtained by physical modeling or system
identification.
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Data Model

Linear regression (in vector notation, ® = (©y_ .11, P2, ..., o) 7).

Y =d0+E,

Least squares estimate:

0= (d7®)'dTY, Y =30=2d"d) o7y
—_———
Q

Nominal data Y, = 6,
Notice that QY = Y, since QP = ©
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Geometric Interpretations

/
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General Form of Consistency Tests

1: Parameter estimation error
0= (") oy =
(®T®) 1Ty — 6, € N4, P)

2: Norm of the simulation error

Yo =Yy = (Yo - Y)"Q(Yo — Y)

where () is a projection matrix (QQ) = Q).
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Ex: Linear Regression and Model Differences

Simulation difference between nominal and estimated model

VMD — || ®6, — B2
= [|QYy — QY3
1Yo - Y3
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Ex: Linear Regression and Parameter Norm

Standard calculations (with deterministic ®) give

6 =0—-0,= (7®) " ®TY - € N(0, A (B7®) "), under H.

——
P

Test statistic: ~
1051 € x*(d), under H,
The test:
<o Ho
10151 = ha

1

Lecture 5, 2005 7

F2E5216/TS1002

Example, cont’d
Alternative formulation with

Yo = By = 0 = (70) ' 0TY, =

VIV = 0] p-
— (Yp—Y)T® (07P) " % (©7) (87®) " &T(Y, - Y)
Y= Y) O (670) T (Y, — V)
A NS
Q
= %(Yo -YV)'Q(Yo - Y).

Warning: Never use ||0]|? or ||Y — Yo ||
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Ex: GLR and Linear Regression

Likelihood ratio assuming Gaussian noise:

_lly—0)2
2

_ P(Yle)  (2mN) e
P(Y|6o) (QWA)—L/QG—W

LR

log likelihood ratio
2X-LLR = ||Y — &6, — |Y — @8]
Generalized Likelihood Ratio:

YOLE  — 2)\~GLR:m§Lx2>\-LLR

= Y — D62 — |V — D] = ... =
= % -Y)'Q(Yy-Y).
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Summary of Examples

Gaussian noise or asymptotic arguments lead to

1Yo = Yl € x*(d)

and

6 € N(0,P) = 0T P70 € x*(d)

when the noise variance is known.
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More General Distance Functions

Assume Gaussian noise and consider the noise variance \ as a
parameter (here and in the book N=L).

Simulation error
1Y — ®6]*
Ao
Generalized likelihood ratio test
Ao Y = @0 IV — @O,
N log — —
S VLW N

The Kullback Divergence test

N.

14 2=
+)\1

N (ﬁ _ 1) + ( )‘0) [Y = 6> (¥ — 260)" (Y — 26))

)\1 )\0 )\1
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The Asymptotic Local Approach
Hypothesis test:

Hy : Nochange 65 =6,
1
H, : Change 0p =0+ —v.

VL
Why decreasing change??
e There is no physical reason
e The test is made more sensitive when the number of data increases.
The estimated change v will have covariance of constant size.

The asymptotic local approach
e is standard in statistics
e can be generalized to e.g. non-linear models.

See Basseville and Nikiforov: Detection of abrupt changes, 1993.
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The Asymptotic Local Approach: Linear
Regression

Model: y; = gpf@ + e
Hy: 0p =0y,
1

H : 0p=0+—=v
1 L 0\/Z

Data: 7, = (gof,yt)T

Primary residual: K (Z;,0y) = :(y; — I 0p), such that
E(K(Z;,00)) = 0 under Hy, and nonzero under H;.
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Quasi-score:

Z ei(ye — ¢ o)
o) \/, Z pie, under Hy
1 T)
= ngtgpt y—i——ngtet under H;
L (t—l \/7 =1

L
Observe that T >, it ~ E(pupf) = M
is almost independent of the data length L.

Let & = E(ng(00)nT (0)) = AE(prp])
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Asymptotic Distribution

AsN(0,)  under Hy
(6)
AsN(Mwv, %) under Hy

For a scalar nz,(6y) any standard test can be used.

For the vector case apply a 2 test on

2_1/2nL(90)

Should be modified if v = T'v, where dim> < dim#, see page 217.
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Isolation

Split parameter vector.
a 6
— ot — (@7, @) ()

Detection Hy: 0 =6y Hy: 0 +#60q
Isolation ~ Hy: 0% =05 Hf: 0°+# 0§

Assume that 6§y = 0, otherwise replace measurements by nominal
residuals Y — ®4,.

Diagnosis: Multiple hypothesis test of different 6¢.
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Alt. 1: Isolation (GLR)

0b = 0, so the fault in 8% does not influence the other elements in the
parameter vector ( extreme marginalization).

)
(1(0))

—_ YT fI)a ((q)a)T(I)a)_l (@u)]iy
Qe

Vi = —2log

= Y'Q",

which is the simulation error projected on the subspace generated by
the fault hypothesis.
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Alt. 2: Isolation (GLR)

0% is nuisance, and its value is unknown and irrelevant.

9(1
maxga gb P (Y\ ( o ))

0
maxge p <Y| ( o ))

= YTQVy —YTQY
YT(Q-Q"Y

V2 = —2log

Lecture 5, 2005
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Remarks

e Q% and Q” are two subspaces in Q)

e Geometrical interpretation: V%isthe part of V' that belongs to (Q“.
V2 is V subtracted by the part that belongs to Q.

e () — Q" is no projection matrix.

e We have Q > QP + %, with equality only when ®*®° = 0. This

means that the second alternative gives a smaller test statistic and a

more cautious test.

Shortcoming:
e There is no penalty in dim 6, which implies that nested fault models
cannot be handled.
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Diagnosis of Sensor Faults

Simple model with two measurements:

0° 10 0
Yt = gb +e = 0 1 gb + ey.

10 ... 10
LetY:(y£L+l""7y?)T,®:(O 1 0 1)

Nominal model: no sensor offset 8 = 0 and Yy = 0.
1. Detection:

1 1 t 2 )
Q=70Te=V=YTQv=2 3 > ()2

L

i=t—L+1 j=1

which is x2(2L) under H,.
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2. Isolation: Both approaches give the same result:
t

1
Q"=7(10...10)7(10...10) = Y'QY = > @)y
i=t—L+1
t
1
Q' = E(O 1..0D"01...01) = YTQY = Z ().
i=t—L+1
Fault | 6¢ 6°
Ve “large” “small”
Ve | ssmal’  “large”
1 t
3. Fault identification: 0% = T Z yz-(l)
i=t—L+1
Lecture 5, 2005 21
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Likelihood Based Methods

Compute and compare likelihoods of any hypothesis
p(Y[H;) =p(Y|0 = 0;, A = No).

Marginalization or maximization of nuisance parameters.
All formulas are found in the appendices of Chapter 5!

Detection and isolation jointly solved. See application example below.
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Echo Path change and Double Talk Detection

from far-end to near-end
talker u listener
FIR- .
filter hybrid
0
" replica
Y | ofecho y
- +
e=y—g+dHn 5 5 d+n
to far-end + U + from near-end
listener talker

Lecture 5, 2005
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FIR echo cancellation works well except
e after abrupt echo path changes (Recovery: increase adaption gain!)
e after double talk (Recovery: stop adaptation at once!)

Correct isolation is far more important then just detection.
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Parameter or variance change

Hy: 0°=0" andVar(w®) = Var(w')
Hy: 0°#60" andVar(w®) = Var(w')
Hy: 0°=0" andVar(w®) # Var(w')

Probability ¢; for H; and ¢ for Hy can be used.

Wishart prior on variance include parameters m and o.
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Sufficient Statistics

Data y(1),y(2),..,y(t — L), y(t —L+1),..,y(t)

Model M, M,

Time interval T T
RLS quantities 0% P, 6', P,

Loss function Vo Vi

Number of data

Lecture 5, 2005
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Likelihood Approach to Detection and

Isolation
{yi}i M
tJi=t—L+1|  ADAPTIVE 1 lo
—_— HO
: FILTER —>
{uiti,
Decision&
— h pecision | L0 H1, Ha}
DEVICE talarm
t—L
{vitizi ADAPTIVE Moy ly
P— H2
B FILTER
{ui}izl
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Q

l
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A Posteriori Likelihoods

Vo(60°) +Vi(6°) + o
ng +ny — 4

+ log det(PO_1 + Pl_l) + 2log(qo),

Vo(0°) + Vi(0!) + a)

(ng+n1—2+m)log(

ng+ny —4
— log det Py — logdet Py + 2log(q1),
Vo (6°
-2yt (22
ng — 4

1/1(«90)+a>

(no—l—n1—2+m)log<

ny — 4
—2logdet Py + 21og(ga),

+(n1 —2+m)log (
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Exercises + Next time

Exercises: 31, 33

Next time: Chapter 7 Change detection based on filter banks
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