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F2E5216/TS1002 Adaptive Filtering and
Change Detection

Fredrik Gustafsson (LiTH) and Bo Wahlberg (KTH)

Lecture 8

Filter Banks for State Changes

• Explicit modeling of additive change: GLR and MLR

• Multiple models: pruning, merging and off-line algorithms
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Likelihood Ratio based Change Detection
Tests

Hypothesis test:

H0 : no jump

H1(k, ν) : a jump of magnitude ν at time k.

Likelihood ratio: In previous notation,

gt(k) =
p(yk)p(yt

k+1)

p(yt)

• gt(k) is just a normalized version of the likelihood.
• gt(k) is a distance measure between H0 and H1(k).
• ν = θ1 when θ0 = 0 is assumed.
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Recursive Formulation

gt(k) =
p(yk)p(yt

k+1)

p(yt)

= gt−1(k)
p(yt|yt−1

k+1)

p(yt|yt−1)

or in the negative logarithm

− log gt(k)︸ ︷︷ ︸
ḡt(k)

= − log gt−1(k)︸ ︷︷ ︸
ḡt−1(k)

+ (− log p(yt|yt−1
k+1) + log p(yt|yt−1))︸ ︷︷ ︸

s̄t(k)

Fits the general stopping rule framework.
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Gaussian Case

The jump ν can be ML estimated (the generalized likelihood ratio test)
or marginalized (the marginalized likelihood ratio test)

gGLR
t (k) =

ν̂2(k)

R/(t − k)

H0

≶
H1

h

gMLR
t (k) =

ν̂2(k)

R/(t − k)
− log(2πR)

H0

≶
H1

0

The noise variance R is assumed known.
Remark 1: It is the product Rh that determines the performance of
GLR.
Remark 2: There is no threshold to design in MLR
(implicitly given by R).
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Implementation Aspects

All 0 < k < t are involved in the test.

Approximation 1: Consider only change times in a sliding window
t − L < k < t.

Approximation 2: Consider only one change time k = t − L
(Brandt’s GLR).

Off-line algorithm:
1. Forward filter computes p(yk),∀k.
2. Backward filter computes p(yN

k+1),∀k.

3. MLR combines these as
p(yk)p(yN

k+1)

p(yN )
.
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Data Models
Explicit modeling of additive pulse change (Ch. 9 and 11):

xt+1 = Atxt + Bu,tut + Bv,tvt + δt−kBθν

yt = Ctxt + et + Du,tut + δt−kDθ,tν.

Step changes are modeled by changing notation δ ↔ σ (step
function).

Multiple models with mode parameter δ, usually 0 or 1 in Ch. 10, or
Markov chain in jump Markov models

xt+1 = At(δ)xt + Bu,t(δ)ut + Bv,t(δ)vt

yt = Ct(δ)xt + Du,t(δ)ut + et

vt ∈ N(mv,t(δ), Qt(δ))

et ∈ N(me,t(δ), Rt(δ)).
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A Direct Approach
Assume step changes. Augmented state space model

x̄t+1 =

(
xt+1

θt+1

)
=

(
At Bθ,t

0 I

)
x̄t +

(
Bu,t

0

)
ut

+

(
Bv,t 0
0 I

)(
vt

δt−(k−1)ν

)

yt =
(

Ct Dθ,t

)
x̄t + et + Du,tut

x̄0|0 =

(
x0

0

)

P̄0|0 =

(
P0 0
0 0

)
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Adaptive Filter or Whiteness Test Approach
Disregards explicit use of δt−k changes. Parameter (change)
estimator:

θ̂t+1|t = θ̂t|t−1 + Kθ
t (yt − Ctx̂t|t−1 − Dθ,tθ̂t|t−1 − Du,tut),

Kt =

(
Kx

t

Kθ
t

)
, Pt =

(
P xx

t P xθ
t

P θx
t P θθ

t

)
.

• Adaptive filtering with state noise covariance

Q̄t =

(
Qt 0

0 Qθ
t

)
• Whiteness based residual test, where Qθ

t is momentarily increased
when a change is detected.
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Multiple-Model Approach

Run N matched filters (standard KF) to each hypothesis H1(k).

Compare likelihoods (or likelihood ratios) computed from εt(k) and
St(k).

Filter�
�

�
ut
yt

x̂t, Pt

No gain (Qθ
t = 0)

Filters�
�

�
ut
yt

x̂t(k), Pt(k)

High gain (Qθ
t = δt−kαI)

�

�
Hyp. test �k̂
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Idea of GLR

Kalman filter matched to H0 → x̂t, Kt (gain), εt, St = Cov(εt)

Kalman filter matched to H1(k) → x̂t(k), εt(k), ϕt(k), μt(k)

Identification under H1(k) → εt(k) = ϕT
t (k)ν(k) + et

Compensation under H1(k) → x̂t(k) ≈ x̂t + μt(k)ν(k).

• Note: linear regression for change magnitude!

• Need: one KF and t RLS filters ⇒ ν̂(k)

• First: update equations for εt(k) and μt(k).
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GLR Lemma

Linear model → influence of change linear → postulate

x̂t|t(k) = x̂t|t + μt(k)ν

εt(k) = εt + ϕT
t (k)ν.

Lemma Update recursion

ϕT
t+1(k) = Ct+1

(
t∏

i=k

Ai − Atμt(k)

)

μt+1(k) = Atμt(k) + Kt+1ϕ
T
t+1(k),

initialized by μk(k) = 0 and ϕk(k) = 0.

Lecture 8, 2005 11

F2E5216/TS1002

GLR Algorithm

Main filter: Kalman filter assuming no jump.

Filter bank: Regressors ϕt(k) and the LS quantities
Rt(k) =

∑t
i=1 ϕi(k)S−1

i ϕT
i (k) and

ft(k) =
∑t

i=1 ϕi(k)S−1
i εi for each k, 1 ≤ k ≤ t.

GLR Test: At time t = N , the test statistic is given by
lN(k, ν̂(k)) = fT

N(k)R−1
N (k)fN(k).

A jump candidate is given by k̂ = arg max lN(k, ν̂(k)).

It is accepted if lN(k̂, ν̂(k̂)) > h

Identification: ν̂N(k̂) = R−1
N (k̂)fN(k̂).
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Comments on GLR

• The system is (often) not persistently excited. That is, ϕt decays to
zero. Intuitively, this means that the KF compensates itself, making
identification of ν unnecessary after a while.
• Test statistic χ2 distributed.
• Regressors pre-computable, decay rather fast to zero for many
systems and depend only on t − k for time-invariant systems. →
Efficient implementations might exist.
• RLS better to use → matrix inversion of RN(k) not needed:

lt(k, ν̂(k)) = fT
t (k)ν̂t(k),
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MLR versus GLR

• In GLR, the threshold is sensitive to incorrectly specified noise
scalings (which does not affect the KF).

R = λR, P 0 = λP0, Q = λQ ⇒ lN(k) = lN(k)/λ
H0

≶
H1

h.

In MLR, there is no threshold. The noise scaling can be incorporated
as a nuissance parameter.

• Complexity. GLR requires N 2 filter updates. Sliding window
approximation requires NL filter updates. Two-filter MLR requires
2N filter updates.
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Multiple Models

xt+1 = At(δ)xt + Bu,t(δ)ut + Bv,t(δ)vt

yt = Ct(δ)xt + Du,t(δ)ut + et

vt ∈ N(mv,t(δ), Qt(δ))

et ∈ N(me,t(δ), Rt(δ)).

Discrete parameter δ is the mode, or discrete state, of the system.

1. δt has S possible outcomes. Mostly S = 2 considered.

2. δt has S Markov states with transition matrix Π (jump Markov
models, hidden Markov model (HMM)). Difficult on-line. EM-algorithm
or Baum-Welch method off-line.
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Example 1: Q(δ) = (1 + 9δ)Q0 can be used to model additive state
changes implicitly.

Example 2: A(δ) can be used to model different turn rates in target
tracking, with (x1, ẋ1, x2, ẋ2)

T as states.

Formulation incorporates: change detection, segmentation, model
structure selection, equalization, blind equalization, outliers and
missing data!
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Basic Strategy

1. Conditional Kalman filter given the mode sequence gives

x̂t|t(δt), Pt|t(δt).

2. Compute the posterior probability of the mode sequence

p(δt|yt).

3. There are St different sequences δt, labelled δt(i),
i = 1, 2, ..., St. Theorem of total probability gives the Gaussian
mixture:

p(xt|yt) =
1∑St

i=1 p(δt(i)|yt)

St∑
i=1

p(δt(i)|yt) N
(
x̂t|t(δt(i)), Pt|t(δt(i))

)
.

Lecture 8, 2005 17

F2E5216/TS1002

Approximations

p(xt|yt) =
1∑St

i=1 p(δt(i)|yt)

St∑
i=1

p(δt(i)|yt) N
(
x̂t|t(δt(i)), Pt|t(δt(i))

)
.

4. On-line: Merging (imm) Add overlapping distributions
N

(
x̂t|t(δt(i)), Pt|t(δt(i))

)
Pruning sequences (detectM) Remove components with small
coefficients p(δt(i)|yt)

5. Off-line: numerical approaches based on the EM algorithm and
MCMC methods (mcmc, gibbs) .
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Pruning versus Merging
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Pruning: cut off branches.
Merging: represent several branches by one.
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A Merging Formula

The best approximation of a sum of L Gaussian distributions

p(x) =
L∑

i=1

α(i) N(x̂j, P j) ≈ α N(x̂, P ),

where α =
L∑

i=1

α(i), x̂ =
1

α

L∑
i=1

α(i)x̂(i)

P =
1

α

L∑
i=1

α(i)
(
P (i) + (x̂(i) − x̂)(x̂(i) − x̂)T

)
Second term: spread of the mean.
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GPB Merging Strategy

Generalized Pseudo Bayesian

i =1
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0 GPB(n): n is the size of sliding

memory (n = 0 standard)
GPB(0): merge all sequences
(1-8).
GPB(1): merge sequences
(1,3,5,7) and (2,4,6,8).
GPB(2): merge sequences (1,5),
(2,6), (3,7) and (4,8).
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IMM

Interacting Multiple Model (IMM) by Bar-Shalom and Li. Essentially
as GPB, but merging after time update, rather than after measurement
update.
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Summary: State Detection

Abrupt state changes can be detected and isolated with either:

• Likelihood ratio (MLR, GLR) hypothesis test, using the statistical
approach.

• Multiple models (IMM,GPB)
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Exercises:

41, 42 (should be (8.100) in 2000-edition), 43.

Next Time

Parity space change detection (deterministic approach)
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