F2E5216/TS1002 Adaptive Filtering and Change Detection

Fredrik Gustafsson (LiTH) and Bo Wahlberg (KTH)

Lecture 8

Filter Banks for State Changes

- Explicit modeling of additive change: GLR and MLR
- Multiple models: pruning, merging and off-line algorithms

Lecture 8, 2005

F2E5216/TS1002

Recursive Formulation

$$g_t(k) = \frac{p(y^k)p(y_{k+1}^t)}{p(y^t)} \\ = g_{t-1}(k)\frac{p(y_t|y_{k+1}^{t-1})}{p(y_t|y^{t-1})}$$

or in the negative logarithm

$$\underbrace{-\log g_t(k)}_{\bar{g}_t(k)} = \underbrace{-\log g_{t-1}(k)}_{\bar{g}_{t-1}(k)} + \underbrace{(-\log p(y_t|y_{k+1}^{t-1}) + \log p(y_t|y^{t-1}))}_{\bar{s}_t(k)}$$

Fits the general stopping rule framework.

Likelihood Ratio based Change Detection Tests

Hypothesis test:

F2E5216/TS1002

 H_0 : no jump $H_1(k, \nu)$: a jump of

) : a jump of magnitude u at time k.

Likelihood ratio: In previous notation,

$$g_t(k) = \frac{p(y^k)p(y_{k+1}^t)}{p(y^t)}$$

• $g_t(k)$ is just a normalized version of the likelihood. • $g_t(k)$ is a **distance measure** between H_0 and $H_1(k)$. • $\nu = \theta_1$ when $\theta_0 = 0$ is assumed.

Lecture 8, 2005

2

F2E5216/TS1002

Gaussian Case

The jump ν can be ML estimated (the *generalized likelihood ratio* test) or marginalized (the *marginalized likelihood ratio* test)

$$g_t^{GLR}(k) = \frac{\hat{\nu}^2(k)}{R/(t-k)} \overset{H_0}{\underset{H_1}{\leq}} h$$
$$g_t^{MLR}(k) = \frac{\hat{\nu}^2(k)}{R/(t-k)} - \log(2\pi R) \overset{H_0}{\underset{H_1}{\leq}} 0$$

The noise variance \boldsymbol{R} is assumed known.

Remark 1: It is the product Rh that determines the performance of GLR.

Remark 2: There is no threshold to design in MLR (implicitly given by R).

1

t - L < k < t.

(Brandt's GLR).

Off-line algorithm:

Data Models

Explicit modeling of additive **pulse** change (Ch. 9 and 11):

$$\begin{aligned} x_{t+1} &= A_t x_t + B_{u,t} u_t + B_{v,t} v_t + \delta_{t-k} B_{\theta} \nu \\ y_t &= C_t x_t + e_t + D_{u,t} u_t + \delta_{t-k} D_{\theta,t} \nu. \end{aligned}$$

Step changes are modeled by changing notation $\delta \leftrightarrow \sigma$ (step function).

Multiple models with mode parameter $\delta,$ usually 0 or 1 in Ch. 10, or Markov chain in jump Markov models

$$\begin{aligned} x_{t+1} &= A_t(\delta)x_t + B_{u,t}(\delta)u_t + B_{v,t}(\delta)v_t \\ y_t &= C_t(\delta)x_t + D_{u,t}(\delta)u_t + e_t \\ v_t &\in \mathrm{N}(m_{v,t}(\delta), Q_t(\delta)) \\ e_t &\in \mathrm{N}(m_{e,t}(\delta), R_t(\delta)). \end{aligned}$$

Lecture 8, 2005

F2E5216/TS1002

Lecture 8, 2005

A Direct Approach

Implementation Aspects

Approximation 1: Consider only change times in a sliding window

Approximation 2: Consider only one change time k = t - L

All 0 < k < t are involved in the test.

1. Forward filter computes $p(y^k), \forall k$. 2. Backward filter computes $p(y_{k+1}^N), \forall k$. 3. MLR combines these as $\frac{p(y^k)p(y_{k+1}^N)}{p(y^N)}$.

Assume **step** changes. Augmented state space model

$$\bar{x}_{t+1} = \begin{pmatrix} x_{t+1} \\ \theta_{t+1} \end{pmatrix} = \begin{pmatrix} A_t & B_{\theta,t} \\ 0 & I \end{pmatrix} \bar{x}_t + \begin{pmatrix} B_{u,t} \\ 0 \end{pmatrix} u$$

$$+ \begin{pmatrix} B_{v,t} & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} v_t \\ \delta_{t-(k-1)}\nu \end{pmatrix}$$

$$y_t = \begin{pmatrix} C_t & D_{\theta,t} \end{pmatrix} \bar{x}_t + e_t + D_{u,t}u_t$$

$$\bar{x}_{0|0} = \begin{pmatrix} x_0 \\ 0 \end{pmatrix}$$

$$\bar{P}_{0|0} = \begin{pmatrix} P_0 & 0 \\ 0 & 0 \end{pmatrix}$$

F2E5216/TS1002

Adaptive Filter or Whiteness Test Approach

Disregards explicit use of δ_{t-k} changes. Parameter (change) estimator:

$$\hat{\theta}_{t+1|t} = \hat{\theta}_{t|t-1} + K_t^{\theta} (y_t - C_t \hat{x}_{t|t-1} - D_{\theta,t} \hat{\theta}_{t|t-1} - D_{u,t} u_t),$$

$$K_t = \begin{pmatrix} K_t^x \\ K_t^\theta \end{pmatrix}, \quad P_t = \begin{pmatrix} P_t^{xx} & P_t^{x\theta} \\ P_t^{\theta x} & P_t^{\theta \theta} \end{pmatrix}.$$

• Adaptive filtering with state noise covariance

$$\bar{Q}_t = \left(\begin{array}{cc} Q_t & 0\\ 0 & Q_t^\theta \end{array}\right)$$

• Whiteness based residual test, where Q_t^{θ} is momentarily increased when a change is detected.

5

F2E5216/TS1002

Idea of GLR

Kalman filter matched to $H_0 \rightarrow \hat{x}_t$, K_t (gain), ε_t , $S_t = \text{Cov}(\varepsilon_t)$ Kalman filter matched to $H_1(k) \rightarrow \hat{x}_t(k)$, $\varepsilon_t(k)$, $\varphi_t(k)$, $\mu_t(k)$ Identification under $H_1(k) \rightarrow \varepsilon_t(k) = \varphi_t^T(k)\nu(k) + e_t$ Compensation under $H_1(k) \rightarrow \hat{x}_t(k) \approx \hat{x}_t + \mu_t(k)\nu(k)$.

- Note: linear regression for change magnitude!
- Need: one KF and t RLS filters $\Rightarrow \hat{\nu}(k)$
- First: update equations for $\varepsilon_t(k)$ and $\mu_t(k)$.

Lecture 8, 2005

F2E5216/TS1002

GLR Algorithm

Main filter: Kalman filter assuming no jump.

Filter bank: Regressors $\varphi_t(k)$ and the LS quantities $R_t(k) = \sum_{i=1}^t \varphi_i(k) S_i^{-1} \varphi_i^T(k)$ and $f_t(k) = \sum_{i=1}^t \varphi_i(k) S_i^{-1} \varepsilon_i$ for each $k, 1 \le k \le t$.

GLR Test: At time t = N, the test statistic is given by $l_N(k, \hat{\nu}(k)) = f_N^T(k)R_N^{-1}(k)f_N(k)$. A jump candidate is given by $\hat{k} = \arg \max l_N(k, \hat{\nu}(k))$. It is accepted if $l_N(\hat{k}, \hat{\nu}(\hat{k})) > h$

Identification: $\hat{\nu}_N(\hat{k}) = R_N^{-1}(\hat{k}) f_N(\hat{k}).$

Multiple-Model Approach

Run N matched filters (standard KF) to each hypothesis $H_1(k)$. Compare likelihoods (or likelihood ratios) computed from $\varepsilon_t(k)$ and $S_t(k)$.



Lecture 8, 2005

F2E5216/TS1002

GLR Lemma

Linear model \rightarrow influence of change linear \rightarrow **postulate**

$$\hat{x}_{t|t}(k) = \hat{x}_{t|t} + \mu_t(k)\nu$$

$$\varepsilon_t(k) = \varepsilon_t + \varphi_t^T(k)\nu.$$

Lemma Update recursion

$$\varphi_{t+1}^{T}(k) = C_{t+1} \left(\prod_{i=k}^{t} A_i - A_t \mu_t(k) \right)$$

$$\mu_{t+1}(k) = A_t \mu_t(k) + K_{t+1} \varphi_{t+1}^{T}(k),$$

initialized by $\mu_k(k) = 0$ and $\varphi_k(k) = 0$.

9

Comments on GLR

• The system is (often) not *persistently excited*. That is, φ_t decays to

zero. Intuitively, this means that the KF compensates itself, making

• Regressors pre-computable, decay rather fast to zero for many systems and depend only on t - k for time-invariant systems. \rightarrow

• RLS better to use \rightarrow matrix inversion of $R_N(k)$ not needed:

 $l_t(k, \hat{\nu}(k)) = f_t^T(k)\hat{\nu}_t(k),$

identification of ν unnecessary after a while.

• Test statistic χ^2 distributed.

Efficient implementations might exist.

F2E5216/TS1002

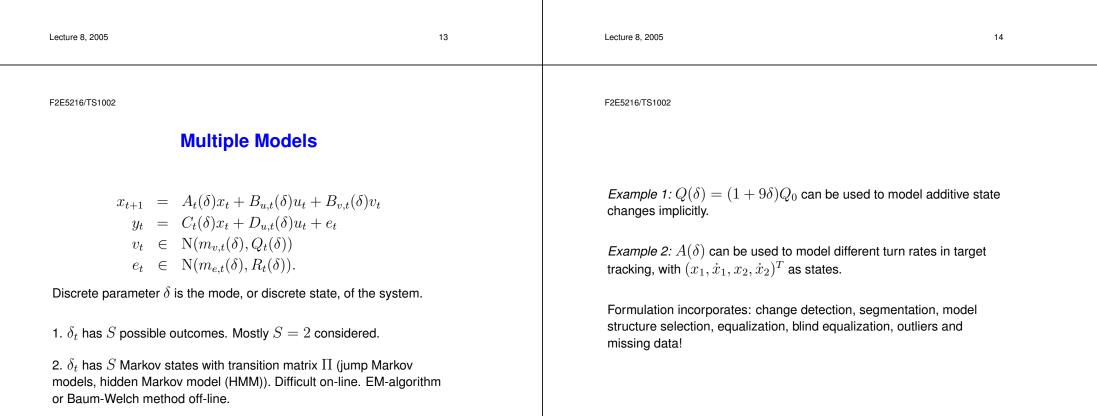
MLR versus GLR

• In GLR, the threshold is sensitive to incorrectly specified noise scalings (which does not affect the KF).

$$\overline{R} = \lambda R, \ \overline{P}_0 = \lambda P_0, \ \overline{Q} = \lambda Q \Rightarrow \overline{l}_N(k) = l_N(k) / \lambda \underset{H_1}{\overset{H_0}{\leq}} h.$$

In MLR, there is no threshold. The noise scaling can be incorporated as a nuissance parameter.

 \bullet Complexity. GLR requires N^2 filter updates. Sliding window approximation requires NL filter updates. Two-filter MLR requires 2N filter updates.



Lecture 8, 2005

F2E5216/TS1002

F2E5216/TS1002

Approximations

$$p(x_t|y^t) = \frac{1}{\sum_{i=1}^{S^t} p(\delta^t(i)|y^t)} \sum_{i=1}^{S^t} p(\delta^t(i)|y^t) \operatorname{N}\left(\hat{x}_{t|t}(\delta^t(i)), P_{t|t}(\delta^t(i))\right).$$

4. **On-line**: Merging (imm) Add overlapping distributions $N\left(\hat{x}_{t|t}(\delta^t(i)), P_{t|t}(\delta^t(i))\right)$

Pruning sequences (detectM) Remove components with small coefficients $p(\delta^t(i)|y^t)$

5. Off-line: numerical approaches based on the EM algorithm and MCMC methods (mcmc, gibbs).

```
Lecture 8, 2005
```

F2E5216/TS1002

A Merging Formula

The best approximation of a sum of L Gaussian distributions

$$p(x) = \sum_{i=1}^{L} \alpha(i) \operatorname{N}(\hat{x}^{j}, P^{j}) \approx \alpha \operatorname{N}(\hat{x}, P),$$

where
$$\alpha = \sum_{i=1}^{L} \alpha(i), \quad \hat{x} = \frac{1}{\alpha} \sum_{i=1}^{L} \alpha(i) \hat{x}(i)$$

$$P = \frac{1}{\alpha} \sum_{i=1}^{L} \alpha(i) \left(P(i) + (\hat{x}(i) - \hat{x})(\hat{x}(i) - \hat{x})^T \right)$$

Second term: spread of the mean.

1. Conditional Kalman filter given the mode sequence gives

 $\hat{x}_{t|t}(\delta^t), P_{t|t}(\delta^t).$

2. Compute the posterior probability of the mode sequence

 $p(\delta^t | y^t).$

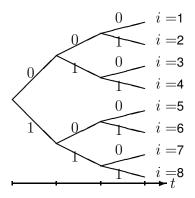
3. There are S^t different sequences $\delta^t,$ labelled $\delta^t(i),$ $i=1,2,...,S^t.$ Theorem of total probability gives the Gaussian mixture:

$$p(x_t|y^t) = \frac{1}{\sum_{i=1}^{S^t} p(\delta^t(i)|y^t)} \sum_{i=1}^{S^t} p(\delta^t(i)|y^t) \operatorname{N}\left(\hat{x}_{t|t}(\delta^t(i)), P_{t|t}(\delta^t(i))\right).$$

Lecture 8, 2005

F2E5216/TS1002

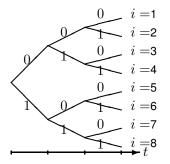
Pruning versus Merging



Pruning: cut off branches. Merging: represent several branches by one. 17

GPB Merging Strategy

Generalized Pseudo Bayesian



GPB(n): n is the size of sliding memory (n = 0 standard) GPB(0): merge all sequences (1-8). GPB(1): merge sequences (1,3,5,7) and (2,4,6,8). GPB(2): merge sequences (1,5), (2,6), (3,7) and (4,8).

IMM

Interacting Multiple Model (IMM) by Bar-Shalom and Li. Essentially as GPB, but merging after time update, rather than after measurement update.

F2E5216/TS1002

Lecture 8, 2005

Summary: State Detection

Abrupt state changes can be detected and isolated with either:

- Likelihood ratio (MLR, GLR) hypothesis test, using the statistical approach.
- Multiple models (IMM,GPB)

F2E5216/TS1002

Lecture 8, 2005

Exercises:

41, 42 (should be (8.100) in 2000-edition), 43.

Next Time

Parity space change detection (deterministic approach)

21